期刊文献+

催化精馏合成碳酸二甲酯神经网络建模与操作条件的遗传算法优化 被引量:2

Neural Network Modeling and GA Optimization of DMC Catalyst Distillation System
下载PDF
导出
摘要 催化精馏合成碳酸二甲酯能够显著提高反应物碳酸丙烯酯的转化率。这里采用径向基神经网络建立某些操作条件与碳酸丙烯酯的转化率之间的模型,并采用遗传算法优化操作条件。优化结果得到试验验证。 Catalyst distillation is an efficient method to produce Dimethyl Carbonate (DMC). In this paper, an RBF Neural Network model of the process is built according to the experimental data. Based on the model, the optimized operation parameters are obtained by the genetic algorithms. The optimized operation condition is proved by experiment.
作者 石红瑞 左锋
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期47-50,共4页 Journal of Donghua University(Natural Science)
关键词 碳酸二甲酯 催化精馏 径向基神经网络 遗传算法 最优操作条件 dimethyl carbonate, catalyze distillation, RBF neural network, genetic algorithms, optimized operation parameters
  • 相关文献

参考文献6

  • 1王泳.催化精馏合成碳酸二甲脂(DMC)的研究:[硕士学位论文].天津:天津大学图书馆,1999
  • 2Moody J,Darken C.Fast learning in networks of locallytuned processing units.Neural Computation,1989,2(2):281-284
  • 3Lippmann R P.Pattern classification using neural networks.IEEE Communication Magazing,1989,27(11):47-64
  • 4Chen S,Cowan C F N,Grant P M.Orthogonal least square algorithm for radial basis function networks.IEEE Trans on Neural Networks,1991,2(2):302-309
  • 5石红瑞,刘勇,刘宝坤,李光泉.基于混合递阶遗传算法的径向基神经网络学习算法及其应用[J].控制理论与应用,2002,19(4):627-630. 被引量:27
  • 6Chen S,Grant P M,Cown C F N.Cown orthogonal leastsquares algorithm for training multioutput radial basis function networks.IEEE Proceedings-F,1992,139(6):378 -384

二级参考文献12

  • 1Moody J, Darken C. Fast learning in networks of locally-tuned pro cessing units [J]. Neural Computation, 1989,2(2):281-284
  • 2Lippmann R P. Pattern classification using neural networks [J]. IEEE Communication Magazing, 1989,27( 11 ): 47 - 64
  • 3Chen S, Cowan C F N, Grant P M. Orthogonal least square algo rithm for radial basis function networks [ J]. IEEE Trans. on Neural Networks, 1991,2(2) :302 - 309
  • 4Chen S, Grant P M, Cown C F N. Orthogonal least-squares algorithm for training multioutput radial basis function networks [ J ]. IEEE Proceedings-F, 1992,139(6) :378 - 384
  • 5Chen S, Billings S A, Grant P M. Recursive hybrid algorithm for non-linear system identification using radial basis function networks[J]. Int. J. Control,1992,55(5):1051 - 1070
  • 6Platt J. A resource-allocating network for function interpolation [J]. Neural Computation, 1991,3(2) :213 - 225
  • 7Kadirkamnathan V, Niranjan M. A function estimation approach to sequential learning with neural network [J]. Neural Computation, 1993,5(6) :954 - 975
  • 8Lu Yingwei, Sundarajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks [J]. Neural Network, 1997,9(2):461-478
  • 9Lu Yingwei, Sundarajan N, Saratchandran P. Performance evaluation ora sequential minimal radial basis function (RBF) neural network learning algorithm [ J ]. IEEE Trans. on Neural Networks, 1998, 9 (2) :308 - 318
  • 10Man K F, Tang K S, Kwong S, et al. Genetic Algorithms for Con trol and Signal Processing [M]. London: Springer-Verlag, 1997

共引文献26

同被引文献42

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部