期刊文献+

ANFIS在短期负荷预测中的应用 被引量:7

Application of Adaptive Neuro-fuzzy Inference System to Short-term Load Forecasting
下载PDF
导出
摘要 为使负荷预测更精确,鉴于预测对象的不确定性和非线性,采用ANFIS预测电力系统短期负荷。ANFIS将模糊理论与神经网络融合,利用神经网络实现系统的模糊逻辑推理,采用混合学习算法调整前提参数和结论参数,自动产生模糊规则。该系统具有非线性映射和自学习能力,不基于数学模型,用独特的空间分层方法建立若干模糊推理系统,依靠专家经验获取控制信息,能用于负荷预测的非线性建模,获取负荷数据的最佳估计,克服数据处理过程中存在的不确定性和不完备性。所用ANFIS模型为2输出1输入5层1阶Sugeuo模糊系统。利用某局网负荷数据训练和检测ANFIS网络模型后预测负荷,结果表明该算法鲁棒性好,抗干扰能力强,能有效补偿对象的大纯滞后。 Great attention is always paid to power system short-term load forecasting (STLF), which is an important task of power utilities. STLF is concerned to the dispatching work and production scheme of power system, it provides original information for power flow calculation and stability analysis. Accurate load forecasting is helpful to the security and stability of power system as well as saving its generation costs. In view of uncertainness and non-linearity of forecast object, the application of Adaptive Neuro-Fuzzy Interference System (ANFIS) model to forecast short-term load is presented in this paper. This paper describes the structure and control mode of ANFIS, main functions of the whole system firstly. Adaptive Neural-fuzzy Inference System adjusts the parameters of the fuzzy inference system with hybrid algorithm and can produce fuzzy rules automatically. ANFIS not only has the ability of nonlinear mapping but also has the ability of self-learning, and instead of being concluded by a mathematics model, the information of control system is obtained by FIS, which is built up by "space delamination". So ANTIS can be used to achieve the nonlinear model of noise. The model not only achieves the optimal reconstruction but also possesses a desired robust against the effect of uncertainties and incomplete information in data processing. The ANFIS architecture predicts STLF is introduced secondly, five membership functions is selected during the simulation, i. e. it has 25 buses in second layer. This paper gives a certain network data to train and check the ANTIS neural network, then give the simulation example of modeling to forecast short-term load, and the results indicates that this strategy has good robust and anti-disturb ability, and it can retrieve the long time delay object.
作者 郭恒 罗可
出处 《高电压技术》 EI CAS CSCD 北大核心 2006年第8期105-107,共3页 High Voltage Engineering
关键词 自适应神经模糊推理系统 电力系统 短期负荷预测 神经网络 模糊推理 adaptive neuro-fuzzy interference system (ANFIS) power system short-term load forecasting neural network fuzzy inference
  • 相关文献

参考文献15

  • 1Sijesen D P.Short term load forecasting in power system[C].Proc.25th Annual ISA Conf.Philadelphia PA,1970:26-29.
  • 2Toyoda J,Chen M,Inoue Y.An application of state estimation to short-term load forecasting[J].IEEE Trans PAS,1970,89(5):1678-1688.
  • 3Rahman S,Bhatnagar R.An expert system based algorithm for short term load forecast[J].IEEE Trans on Power Systems,1988,3(2):392-399.
  • 4Park D C,EI -Sharkawi M A,Marks R J.Electric load forecasting using an artificial neural network[J].IEEE Trans on Power Systems,1991,6(2):442-449.
  • 5Mohammed O,Park D,Merchant R,et al.Practical experiences with an adaptive neural network short-term load forecasting system[J].IEEE Trans on Power Systems,1995,10(1):254-259.
  • 6Daneshdoost M,Lotfalian M,Bumroonggit G,et al.Neural network with fuzzy set-based classification for short-term load forecasting[J].IEEE Trans on Power Systems,1998,13(4):1386-1391.
  • 7丁坚勇,刘云.基于负荷特征提取的神经网络短期负荷预测[J].高电压技术,2004,30(12):47-49. 被引量:17
  • 8李天云,刘自发.电力系统负荷的混沌特性及预测[J].中国电机工程学报,2000,20(11):36-40. 被引量:125
  • 9赵杰辉,葛少云,刘自发.基于主成分分析的径向基函数神经网络在电力系统负荷预测中的应用[J].电网技术,2004,28(5):35-37. 被引量:41
  • 10You Yong,Wang Sun'an,Sheng Wanxing.Short-term load forecasting using artificial immune network[J].IEEE Trans on Power Systems,2002,17(2):2322-2325.

二级参考文献25

  • 1王辛.改进径向函数网格(RBFN)在电力负荷预报中的应用[J].中国电机工程学报,1996,16(4):285-287. 被引量:6
  • 2王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 3Jian Li,IEEE Trans signal processing,1998年,46卷,8期,8页
  • 4王东升,混沌、分形及其应用,1995年
  • 5Merill, H M, A J Wood. Risk and uncertainty in power system planning[J]. Electric Power & Energy System, 1991,13(2) :81-90.
  • 6Merril HU, Schweppe F C. Strategic planning for electric utilities: problems and analytical methods[J]. Interfaces, 1984,14(1): 72-83.
  • 7张文修 吴伟志 梁吉业.粗糙集理论和方法[M].北京:科学出版社,2001..
  • 8CHOW Moyuen, TRAM H. Application of fuzzy logic technology for spatial load forecasting[J]. IEEE Transactions on Power Systems, 1997, 12(3):1360-1365.
  • 9A Khotanzad, E Zhou, H Elragal. A neuro-fuzzy approach to short-term load forecasting in price-sensitive environment[J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2002,17(4): 1273-1282.
  • 10Kwang-Ho Kim, Hyoung-Sun Youn, Yong-Cheol Kang. Short-term load forecasting for special days in anomaious load conditions using neural networks and fuzzy inference method[J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2002,15(2): 559-565.

共引文献219

同被引文献62

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部