摘要
为了使解非0型、非1型的逻辑方程F=G更加灵活、多样化,给出了F=G成立的充要条件,将逻辑方程F=G化为0型或1型逻辑方程的方法和相应的推论,并给予证明.得到了若F+G=0和F+G=0的解集分别为S1,S2,则F=G的解集为S1+S2、以及若F?G=1和F?G=1的解集分别为S'1,S'2,则F=G的解集为S1'+S'2的结论.从而可应用结论解非0型、非1型的逻辑方程.
In order to make the solution of non-zero type and non-one type logic equations F = G varied and easy, this topic gives a necessary and sufficient condition of logic equation F = G, which comes up with a method to change logic equation F = G into zero type or one type logic equation and corresponding consequence, and gives their proofs. Get the following conclusions: If solution set of F + G = 0 and F^- + G^- = 0 are S1, S2 separately, thus solution set of F = G is S1 + S2; if solution set of F·G = 1 and F^-·G^- = 1 are S'1, S'2 separately, thus solution set of F = G is S'1 + 3'2. So we can apply this conclusion to solute non-zero type and non-one type logic equations.
出处
《高师理科学刊》
2006年第3期5-7,共3页
Journal of Science of Teachers'College and University
基金
山东科技大学立项课题资助项目([2005]07-44)
关键词
逻辑方程
非0型
非1型
解集
logic equation
non-zero type
non-one type
solution set