期刊文献+

广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性 被引量:3

Conditional stability of the solitary wave solutions for the generalized compound KdV equation and generalized compound KdV-Burgers equation
下载PDF
导出
摘要 讨论了广义组合KdV方程和广义组合KdV Burgers方程的孤波解,在Liapunov意义下的条件稳定性.证明了当行波形式的微小扰动满足一定条件时,这两类方程的精确孤波解具有线性稳定性. The conditional stability of solitary wave solutions in Liapunov's index sense for the generalized compound KdV equation and generalized compound KdV-Burgers equation is discussed. Linear stability of exact solitary-wave solutions is proved for the two types of equations mentioned above, when the small disturbance in traveling wave form satisfies some conditions.
出处 《上海理工大学学报》 EI CAS 北大核心 2006年第4期307-316,共10页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10371023) 上海市重点学科建设资助项目(T0502)
关键词 广义组合KdV方程 广义组合KdV—Burgers方程 孤波解 条件稳定性 Liapunov特征指数 generalized compound KdV equation generalized compound KdV-Burgers equation solitary wave solution conditional stability Liapunov index
  • 相关文献

参考文献15

  • 1WADATI M.Wave propagation in nonlinear lattice[J].J Phys Soc Jpn,1975,38:673-680.
  • 2BONA J L,SCHONBEK M E.Travelling wave solutions to the Korteweg-de Vries-Burgers equation[J].Proc R Soc Edinburgh Sect A,1985,101:207-226.
  • 3DEY B.Domain wall solution of KdV like equations with order nonlinearity[J].J Phys A,1986,19:L9-L12.
  • 4COFFEY M W.On series expansions giving closed-form of Korteweg-de Vries-like equations[J].SIAM J Appl Math,1990,50:1 580-1 592.
  • 5ZHANG Wei-guo.Exact solutions of the Burgers-compound KdV mixed equation[J].Acta Math Sci,1996,16:241-248.
  • 6WANG M.Exact solutions of a compound KdV-Burgers equation[J].Phys Lett A,1996,213:279-287.
  • 7ZHANG Wei-guo,CHANG Qian-shun,JIANG Bao-guo.Explict exact solitary-wave solutions for compound KdV-type and compound KdV-type equations with nonlinear terms of any order[J].Chaos Soliton and Fractal,2002,13:311-319.
  • 8BENJAMIN T B.The stability of solitary wave[J].Proc R Soc London A,1972,328:153-183.
  • 9BONA J L.On the stability of solitary waves[J].Proc R Soc London A,1975,344:363-374
  • 10BONA J L,SOUGANIDIS P E,STRAUSS W A.Stability and instability of solitarywaves[J].Proc R Soc London,1987,A411:395-412.

同被引文献37

  • 1张大珩,丁丹平,洪宝剑.广义非线性超弹性杆波动方程的行波解[J].江南大学学报(自然科学版),2006,5(5):620-623. 被引量:3
  • 2冯大河,李继彬.Jaulent-Miodek方程的行波解分支[J].应用数学和力学,2007,28(8):894-900. 被引量:9
  • 3Benney D J. Long nonlinear waves in fluid flow [J]. JMath Phys,1966,45(1) :52- 60.
  • 4Nozaki K. Hirota,s method and the singular manifoldexpansion [J].J Phys Soc Japan,1987,56(l):3052 — 3054.
  • 5Song L. New exact solutions of the KdV-Burgers-Kuramotoequation [J]. Phys Lett A,2006,358(5) :5-6.
  • 6Ruan L,Gao W,Chen J. Asymptotic stability of therarefaction wave for the generalized KdV-Burgers-Kuramoto equation [J]. Nonlinear Analysis Theory,Methods and Applications,2008,68(2) :402 - 411.
  • 7Ren Y J,Zhang H Q. A generalized F-expansion methodto find abundant families of Jacobi elliptic functionsolution of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation [J]. Chaos,Solitons & Fractals,2006,27(4):959-977.
  • 8Malfeit W. Solitary wave solutions of nonlinear waveequations [J]. Am J Phys, 1992,60(7) :650 - 654.
  • 9Soliman A. Exact solutions of KdV-Burgers equation byExp-function method [J]. Chaos, Solitons & Fractals,2009,41(2):1034-1452.
  • 10Ebaid A. Exact solitary wave solutions for somenonlinear evolution equations via exp-function method[J]. Phys Lett A,2007,365(3) :213 - 225.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部