期刊文献+

基于神经网络的襟翼舵升力系数预报 被引量:6

Lifting coefficient prediction of flap rudder using BP neural network
下载PDF
导出
摘要 将BP神经网络应用于襟翼舵升力系数预报,分析了BP神经网络的非线性逼近能力.针对BP神经网络在训练中存在的学习速度慢、易于陷入局部最小等缺点,采用变学习率的BP算法加以改进.对襟翼舵升力系数进行预报,结果表明:预报值的精度明显高于由近似公式计算所得的值,采用BP神经网络对襟翼舵水动力性能进行预报是可行的,能够满足工程应用的要求. BP neural network is applied in the lifting coefficient prediction of flap rudder. The non-linear approaching ability of BP neural network is analyzed. The variable learning rate of BP algorithm is adopted to mend the drawbacks that are common for BP neural network in training, for example, low learning rate, easy to get into the local minimum points. The lifting coefficient of flap rudder is predicted, the result shows that, compared with the value calculated by approximate formula, the value predicted by neural network has higher precision. So it is feasible to adopt BP neural network to predict the hydrodynamic performance of flap rudder, and it can also satisfy the need of engineering application.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期83-87,共5页 Journal of Harbin Engineering University
关键词 襟翼舵 升力系数 BP神经网络 flap rudder lifting coefficient BP neural network
  • 相关文献

参考文献5

  • 1丁玲玲,刘胜,邓志红,孙静川.舰船主舵/襟翼舵广义预测联合控制规律研究[J].哈尔滨工程大学学报,2000,21(3):1-6. 被引量:8
  • 2杨建民.襟翼舵水动力性能研究[J].上海交通大学学报,1997,31(11):133-136. 被引量:7
  • 3LIU Sheng,DU Yanchun,LI Wanlong,ZHENG Xiuli.Sonar array servo system based on diagonal recurrent neural network[A].IEEE International Conference on Mechatronics and Automation,ICMA 2005[C].Canada,2005:1912-1917.
  • 4HAGAN M T,DEMUTH H B,BEALE M H.Neural Network Design[M].北京:机械工业出版社,2002:201-234.
  • 5CYBENKO G.Approximation by superpositions of a sigmoidal function[J].Math Contr Signal Syst,1989,2(4):303-314.

二级参考文献1

  • 1Clark D W,Mohtadi C,Tuffs P S.Generalized Predictive Control [J].Automatic,1987,23(2):137 - 160.

共引文献11

同被引文献27

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部