期刊文献+

用于函数优化的进化非选择算法实验分析

Experimental analyses of evolutionary negative selection algorithm for function optimization
下载PDF
导出
摘要 进化非选择算法是将生物免疫系统的非选择机制和进化学习机制相结合而形成的算法,影响其求解效率的算子除了传统进化算法中的变异和选择算子外,还有非选择算子.通过函数优化实验验证了进化非选择算法的求解性能,结果表明非选择算子的引入使得进化非选择算法能够较好地跳出局部最优解,具有较为稳定的求解性能.与此同时,针对函数优化问题,给出了非选择算子相关的自我集大小和自我集每代更新数目这2个影响算法效率的重要参数的参考取值方法. Evolutionary Negative Selection Algorithm is a synthesis of the negative selection mechanism and the evolutionary learning mechanism in biological immune system. In addition to mutation operator and selection operator of traditional Evolutionary Algorithm, negative selection operator will also affect the performance of the Evolutionary Negative Selection Algorithm. The function optimization experiments are conducted to demonstrate the performance of the Evolutionary Negative Selection Algorithm. And the experimental results show that with the negative selection operator, the Evolutionary Negative Selection Algorithm has better ability of escaping from local optimizations and getting a stable performance. At the same time, aiming at the function optimization problem, the empiristic methods of setting the self set size and the updating number of the self set at every generation are also given in this paper, both of which are important parameters about the negative selection operator, which will affect the performance of the algorithm very much.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期158-163,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60404004) 安徽省教育厅重点项目(2004kj360zd).
关键词 人工免疫系统 进化非选择算法 函数优化 非选择算法 artificial immune system evolutionary negative selection algorithm function optimization negative selection algorithm
  • 相关文献

参考文献13

  • 1CASTRO L N,TIMMIS J.Artificial immune systems:a new computational intelligence approach[M].London:Springer-Verlag,2002.
  • 2FORREST S,PERELSON A S,ALLEN L,Cherukuri R.Self-nonself discrimination in a computer[A].Proceedings of 1994 IEEE Symposium on Research in Security and Privacy[C].Los Alamitos,America,1994.
  • 3D'HAESELEER P,FORREST S,HELMAN P.An immunological approach to change detection:algorithms,analysis and implications[A].Proceedings of 1996 IEEE Symposium on Security and Privacy[C].Oakland,America,1996.
  • 4CASTRO L N,ZUBEN F J.Learning and optimization using the clonal selection principle[J].IEEE Transactions On Evolutionary Computation,2002,6(3):239-251.
  • 5GONZALEZ L J.A self-adaptive evolutionary negative selection approach for anomaly detection[D].Fort Lauderdale,FL:Nova Southeastern University,2005.
  • 6KIM J,BENTLEY P J.Immune memory in the dynamic clonal selection algorithm[A].Proceedings of 1st International Conference on Artificial Immune Systems (ICARIS 2002)[C].Canterbury,UK,2002.
  • 7KIM J,BENTLEY P J.Immune memory and gene library evolution in the dynamical clonal selection algorithm[J].Journal of Genetic Programming and Evolvable Machines,2004,5(4):361-391.
  • 8KIM J,WILSON W,AICKELIN U,MCLEOD J.Cooperative automated worm response and detection immune algorithm (CARDINAL) inspired by T-cell immunity and tolerance[A].Proceedings of 4th International Conference on Artificial Immune Systems (ICARIS 2005)[C].Banff,Alberta,Canada,2005.
  • 9LUO Wenjian,WANG Xufa,et al.Evolutionary negative selection algorithms for anomaly detection[A].Proceedings of 8th Joint Conference on Information Sciences[C].Salt Lake City,America,2005.
  • 10张义国,罗文坚,王煦法.基于免疫原理的逻辑电路设计算法[J].计算机工程与应用,2006,42(11):38-40. 被引量:5

二级参考文献8

  • 1A Thompson,P Layzell,R S Zebulum.Explorations in design space:Unconventional electronics design through artificial evolution[J].IEEE Transactions on Evolutionary Computation,1999,3(3):167~196
  • 2X Yan,T Higuchi.Promises and challenges of evolvable hardware[J].Workshop on Artificial Immune Systems and Their Applications,1999,29(1):87~97
  • 3L N de Castro,J Timmis.Artificial immune systems:a new computational intelligence approach.Springer,2002
  • 4Wenjian Luo,Xufa Wang et al.Evolutionary negative selection algorithms for anomaly detection[C].In:Proceedings of the 7th International Conference on Computational Intelligence and Natural Computing(CINC'2005),held in conjunction with the 8th Joint Conference on Information Sciences (JCIS'2005),Salt Lake City,Utah,2005-07
  • 5Miller J F,Job D,Vassilev V K.Principles in the evolutionary design of digital circuits-part i[J].Journal of Genetic Programming and Evolvable Machines,1999, 1 (1):8~35
  • 6F M Burnet.The clonal selection theory of acquired immunity[M].Cambridge:Cambridge University Press,1968
  • 7S A Hofmeyr.An interpretative introduction to the immune system.Design Principles for the Immune System and other Distributed Autonomous Systems[M].Oxford University Press,2000
  • 8L N de Castro,F J Von Zuben.Learning and optimization using the clonal selection principle[J].IEEE Transactions on Evolutionary Computation,2002, 6 (3):239~251

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部