期刊文献+

危险感知的数字微分初步 被引量:3

Introduction to danger sensed through numerical differential
下载PDF
导出
摘要 信息系统中的资源是海量的,而且这些资源的状态又是不断变化的,这都大大增加了进行危险感知的难度,常规的方法难以应对.一切异常必然在系统的某些外在属性上留下痕迹,并带来系统资源的变化.变化及变化趋势是安全异常检测的基础.通过研究变化及变化趋势,来从新的角度研究危险感知.借鉴了数学中微分的概念,提出运用数字微分的方法来描述系统中信息资源的变化及变化趋势,并指出数字微分的奇异点就是危险,通过对变化及变化趋势的检测来感知系统的危险,从而产生危险信号. The resource of information system is huge and its state is changing all the time. The difficulty to sense danger increased due to this can't be dealt with common method. Traces will be left on the system's exterior attributes and the system resource will be changed by any abnormalities. The change and its trend are the basis of abnormal detection. The danger can be sensed from different aspects. Differential calculus in math is used for reference and numerical differential method is presented to describe change and its trend of the system resource. Danger can be indicated by the abnormal point of numerical differential. System's threat is sensed through change and its trend detection and then dangerous signal is generated.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期228-232,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60573038)
关键词 危险感知 数字微分 人工免疫 信息安全 danger sensed numerical differential AIS information security
  • 相关文献

参考文献7

  • 1FORREST S,HOFMEYR S,SOMAYAJI A,Computer Immunology[J],Communications of the ACM,1997,40(10):88-96.
  • 2MATZINGER P.The danger and the extended family.Annual Review of Immunology,12:991.
  • 3BASSEYILLE M.,NIKIFOROY I.Detection of abrupt changes:theory and applications[M].Englewood Cliffs,Prentice-Hall,1993.
  • 4R.柯朗,H.罗宾.什么是数学-对思想和方法的基本研究[M].上海:复旦大学出版社.
  • 5JEFFREY L.Undercoffer intrusion detection:modeling system state to detect and classify aberrant behaviors[D].2004.
  • 6单长虹,张焕国,孟庆树,彭国军.一种启发式木马查杀模型的设计与分析[J].计算机工程与应用,2004,40(20):130-132. 被引量:12
  • 7HEGAZY I,FAVED Z_T.FAHEEM H.M..A multi-attent based system for intrusion detection.Potentials,IEEE,Oct/Nov.2003,22(4):28-31.

二级参考文献2

共引文献11

同被引文献24

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部