期刊文献+

精简训练样本与支持向量 被引量:1

Prune the training samples and support vectors
下载PDF
导出
摘要 支持向量机基于统计学习理论并能较好地解决小样本问题,对许多含有大数量样本的数据库来说,支持向量机并不非常合适.训练样本的数量严重影响训练的速度与支持向量的数量.实验表明,保留训练样本的邻界样本,去除部分非邻界样本可以明显地减少训练样本的数量和支持向量的个数,而泛化能力几乎没有下降. SVM is based on statistical learning theory and can solve small-sample learning problem better. But for many databases with a huge number of samples, they are not so well suitable for SVM. The number of samples severely influences the training speed and the number of SVs. Experiments show that remaining the border samples and pruning some non-border samples can greatly increase the training speed and reduce the number of SVs while the generalization is almost as good as that of the original training set.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期428-433,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目--复杂大规模生物神经网络系统的混沌动力学研究(10572086).
关键词 支持向量机 支持向量 训练样本 精简 support vector machine support vector training samples pruning
  • 相关文献

参考文献7

  • 1VAPNIK V.Statistical learning theory[M].New York:Wiley,1998.
  • 2TRAN Quang-Anh,ZHANG Qian-Li,LI Xing.Reduce the number of support vectors by using clustering techniques[A].Proceedings of the Second International Conference on Machine Learning and Cybernetic,Vol2[C].Xi'an,2003:1245-1248.
  • 3DOWNS T,GATES K E,MASTERS A.Exact simplification of support vectors solutions[J].Journal of Machine Learning Research,2001(2):293-297.
  • 4AMARI S,WU S.Improving support vector machine classifiers by modifying kernel functions[J].Neural Networks,1999,12:783-789.
  • 5KOGGALAGE R,HALGAMUGE S.Reducing the number of training samples for fast support vector machine classification[J].Neural Information Processing,2004,2(3):57-65.
  • 6王贵新,汪同庆,余静,宛西原,刘建胜,居琰.计算SVM判别函数值的方法[J].计算机辅助设计与图形学学报,2003,15(6):720-723. 被引量:1
  • 7肖健华.基于支持对象的野点检测方法[J].计算机工程,2003,29(11):43-45. 被引量:23

二级参考文献14

  • 1范金城,胡峰.动态测量数据的抗扰性分析研究[J].数理统计与应用概率,1996,11(3):244-248. 被引量:25
  • 2Knorr E M, Ng R T. Algorithms for Mining Distance-based Outiiers in Large Datasets. Proc. VLDB, 1998:392-403.
  • 3Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998,2(2):121.
  • 4Moya M R, Koch M W, Hostetler L R. One-class Classifier Networks for Target Recognition Applications. Portland:Proceedings World Congress on Neural Networks, 1993:797-801.
  • 5Tax D, Duin R. Data Domain Description Using Support Vectors.Proc. European Symposium Artificial Neural Networks, 1999:251-256.
  • 6Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995
  • 7Burges C J C. A tutorial on support vector machine for pattern recognition [J]. Knowledge Discovery and Data Mining, 1998, 2(2): 121~167
  • 8Burges C J C, Schlkopf B. Improving the accuracy and speed of support vector learning machines[A]. In: Mozer M, Jordan M, Petsche T, eds. Advances in Neural Information Processing Systems Cambridge[C]. MA: MIT Press, 1997. 375~381
  • 9Nando de Freitas, et al. Sequential support vector machines[A]. In: Proceedings of IEEE INternational Workshop on Neural Networks for Signal Processing, Winsconsin, 1999. 31~40
  • 10Tom Downs, Kevin E Gates, et al. Exact simplification of support vector solutions[OL]. http://www.kernel-machines.org/imlr/, 2001

共引文献22

同被引文献5

  • 1Burges C J C. Simplified support vector decision rules[DB/OL]. [2008- 05- 20]. http://eiteseerx. ist. psu. edu/ viewdoc/summary? doi= 10.1.1.54. 9934.
  • 2Schoelkopf B,Smola. Learning with kernels[M]. Cambrige, MA: MIT press, 2002.
  • 3Nguyen DucDung, Ho TuBao. An efficient method for simplifying support vector machines[DB/OL].[2008-05-20]. http://portal. acm. org/citation. cfm? id= 1102429.
  • 4曾志强,高济.基于向量集约简的精简支持向量机[J].软件学报,2007,18(11):2719-2727. 被引量:16
  • 5王维民.一种基于支持向量机的虹膜识别算法[J].辽宁石油化工大学学报,2008,28(4):82-85. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部