期刊文献+

SP-MEC算法的收敛性分析

Study of Convergence of SP-MEC
下载PDF
导出
摘要 进化算法求解多目标优化问题具有独特的优势。SP-MEC是一种新的利用思维进化算法(MEC)解决多目标优化问题的算法,数值实验结果验证了它的可行性与有效性。文章利用概率论的基本理论对其收敛性进行分析,提出局部Pareto最优解集、局部Pareto最优态集及趋同过程产生的序列强收敛的概念,证明了在满足一定条件下趋同过程产生的序列强收敛于局部Pareto最优态集。 Evolutionary algorithms are well suited for multi-objective optimization problems.Scored Pareto Mind Evolutionary Computation(SP-MEC) is a new Multi-Objective Evolutionary Algorithm(MOEA),which uses MEC algorithm for multi-objectlve optimization.Feasibillty and efficiency of SP-MEC is illustrated by numerical results.In this paper,the probability theory is used as a tool to analyze convergence of SP-MEC.The concepts of local Pareto optimal solution set and local Pareto optimal state set are presented.Strong convergence of sequence of population generated through operation similartaxis is defined.And it is proved that the sequence of population generated through operation similartaxis strongly converges to local Pareto optimal state set under some conditions.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第24期43-45,52,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60174002) 北京市教育委员会科技发展计划资助项目(编号:KM200600006001 KM200600006003)
关键词 进化计算 多目标 思维进化计算 收敛性趋同操作 异化操作 evolutionary computation,muhi-objective,mind evolutionary computation,convergence,operation similartaxis, operation dissimilation
  • 相关文献

参考文献22

  • 1J David Schaffer.Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[D].PhD thesis.Vanderbilt University,1984
  • 2Frank Kursawe.A variant of evolution stratesies for vextor optimization[C].In:H-P Schwefel,R Manner eds.Parallel Problem Solving from Nature,1991:193~197
  • 3David E Goldberg.Genetic Algorithm in Search,Optimization and Machine Learning[M].Massachusetts:Addison-Wesley Publishing Company,Reading,1989
  • 4Corlos M Fonseca,Peter J Fleming.Genetic algorithms for multi-objective optimization:Formulation,discussion and generalization[C].In:Stephanie Forrest ed.Proceedings of the Fifth International Conference on Genetic Algorithms,San Mateo,California,Morgan Kaufmann,1993:416~423
  • 5N Srinivas,K Deb.Multi-objective optimization using nondominated sorting in genetic algorithms Berlin[J].Evolutionary Computation,1994;2(3):221~248
  • 6Jeffrey Horn,Nicholas Nafpliotis,Davis E Goldberg.A niched pareto genetic algorithm for multi-objective optimization[C].In:Proceedings of the First IEEE Conference on Evolutionary Computation,IEEE WorldCongress on Computational Computation,Piscataway,NJ IEEE Press,1994:82~87
  • 7E Zitzler,L Thiele.Multi-objective evolutionary algorithms:A comparative case study and strength pareto approach[J].IEEE Transactions on Evolutionary Computation,1999;3(4):257~271
  • 8J D Knowles,D W Corne.Approximating the non-dominated front using the Pareto archived evolution strategy[J].Evolutionary Computation Journal,2000;8(2):149~172
  • 9Joshua D Knowles,Davis W Corne,Martin J Oates.The Pareto-Envelope based selection algorithm for multi-objective optimization[C].In:proceedings of the Sixth International Conference on Parallel Problem Solving from Nature(PPSNVI),Berlin,2000-09:839~848
  • 10G Rodolph.On a multi-objective evolutionary algorithm and its convergence to the pareto set[C].In:IEEE Int'l Conf on Evolutionary Computation (ICEC'98),Piscataway,IEEE Press,1998:511~516

二级参考文献22

  • 1Goldberg D. E.. Genetic Algorithms for Search, Optimization,and Machine Learning. MA: Addison-Wesley, 1989
  • 2Srinivas N. , Deb K.. Multi-objective function optimization use non-dominated genetic algorithms. Evolutionary Computation,1994, 2(3): 221~248
  • 3Zitzler E. , Thiele L.. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Transactions on Evolutionary Computation, 1999, 3 (4):257~271
  • 4Knowles J. D. ,Corne D. W.. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2), 149~172
  • 5Deb K. , Agrawal S. , Pratap A. , Meyarivan T.. A fast and elitist multi-objective genetic algorithms: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182~197
  • 6Rudolph G.. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In: Proceedings of the 15th IEEE Conference Evolutionary Computation, Anchorage AK,1998, 511~516
  • 7Rudolph G., Agapie A.. Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC2000), Piscataway, NJ, 2000, 1010~1016
  • 8Hanne Thomas. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research,1999, 117(3): 553~564
  • 9Laumanns M. , Thiele L. , Deb K. , Zitzler E.. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 2002, 10(3): 263~282
  • 10Zitzler E. , Thiele L. , Laumanns M. , Fonseca C. M.. V Grunert da Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117~132

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部