期刊文献+

蛋白质指纹图谱模型在肝癌诊断中的应用 被引量:3

Application of protein fingerprint pattern models in liver cancer diagnosis
下载PDF
导出
摘要 目的:建立基于人工神经网络的血清蛋白质指纹图谱模型,并探讨其在肝癌诊断中的应用。方法:应用表面增强激光解析-电离-飞行时间质谱仪(SELDI-TOF-MS),测定了52例肝癌和32例健康人血清标本的蛋白质指纹图谱,并结合人工神经网络方法进行数据分析。将84例标本随机分成训练组56例(肝癌35例,健康人21例)和盲法测试组28例(肝癌17例,健康人11例)。利用从训练组得出的基于人工神经网络的血清蛋白质指纹图谱模型,对28例未知血清进行检测,并与甲胎蛋白(AFP)判断结果进行比较。结果:应用该方法对肝癌进行诊断的准确率、敏感性和特异性均为100%(17/17,11/11)。AFP检测结果准确率为77.4%(65/84),灵敏度和特异性分别为69.2%(36/52)和90.6%(29/32)。结论:该方法在肝癌的诊断中较AFP具有更高的敏感性和特异性。 Aim : To evaluate the application of serum protein fingerprint pattern based on artificial neural network in diagnosis of liver cancer. Methods : A total of 52 cases of the patients with primary liver cancer and 32 cases of the healthy people were tested by WCX2 chip and proteinchip reader. A total of 84 samples were allocated into training group ( n = 56, 35 cases of liver cancer and 21 cases of healthy people) and blind test group (n =28, 17 cases of liver cancer and 11 cases of healthy people). The serum samples of the blind test group was detected using the protein fingerprint pattern model that obtained from the training group. The results were compared with those using AFP. Results: The accuracy, sensitivity, and specificity of using the potein fingerprint pattern were all 100% , and those of using AFP were 77.4% ,69.2% , and 90.6% ,respectively. Conclusion: Liver cancer can be quickly and exactly diagnosed by this method with higher sensitivity and specificity.
出处 《郑州大学学报(医学版)》 CAS 北大核心 2006年第5期913-914,共2页 Journal of Zhengzhou University(Medical Sciences)
关键词 人工神经网络 蛋白质指纹图谱 肝肿瘤 artificial neural network protein fingerprint pattern liver neoplasm
  • 相关文献

参考文献8

  • 1Srinivas PR,Srivastava S,Hanash S.Proteomics in early detection of cancer.Clin Chem,2001,47 (10):1 901
  • 2Weinberger SR,Boschetti E,Santambien P,et al.Surface-enhanced laser desorption-ionization retentate chromatography mass spectrometry (SELDI-RC-MS):a new method for rapid development of process chromatography conditions.J Chromatogr Bnaly Technol Biomed Life Sci,2002,782(1/2):307
  • 3Davies H,Lomas L,Austen B.Profiling of amyloid beta peptide variants using SELDI Protein Chip-arrays.Biotechniques,1999,27(6):1 258
  • 4Bane TK,LeBlanc JF,Lee TD,et al.DNA affinity capture and protein profiling by SELDI-TOF mass spectrometry:effect of DNA methylation.Nucleic Acids Res,2002,30(14):e69
  • 5Adam BL,Qu Y,Davis JW,et al.Serum protein fingerprinting coupled with a pattern matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men.Cancer Res,2002,62 (13):3 609
  • 6Bandera CA,Ye B,Mok SC.New technologies for the identification of markers for early detection of ovarian cancer.Curr Opin Obstet Gynecol,2003,15 (1):51
  • 7Paweletz CP,Trock B,Pennanen M,et al.Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF:potential for new biomarkers to aid in the diagnosis of breast cancer.Dis Markers,2001,17(4):301
  • 8Witzigmann H,Geissler F,Benedix F,et al.Prospective evaluation of circulating hepatocytes by alpha-fetoprotein messenger RNA in patients with hepatocellular carcinoma.J Surgery,2002,131 (1):34

同被引文献26

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部