期刊文献+

大豆叶绿素含量高光谱反演模型研究 被引量:91

Inverse model for estimating soybean chlorophyll concentration using in-situ collected canopy hyperspectral data
下载PDF
导出
摘要 叶绿素是植物体进行光合作用、进行第一性生产的重要物质,能够间接反映植被的健康状况与光合能力,同时也能反映植被受环境胁迫后的生理状态。高光谱遥感为快速、大面积监测植被的叶绿素变化提供了可能。该研究实测了不同水肥耦合作用下,大豆冠层的高光谱反射率与叶绿素含量数据,对二者进行了相关分析;采用特定叶绿素敏感波段建立了植被指数叶绿素估算模型;最后采用相关系数较大的波段作为神经网络模型的输入变量进行了叶绿素含量的估算。经对比发现叶绿素A、B与光谱反射率在可见光与近红外波段的相关系数的变化趋势基本一致,在可见光谱波段呈负相关,近红外波段呈正相关,红边处相关系数由负变正。特定色素植被指数可以提高大豆叶绿素估算精度(R2>0.736),但是人工神经网络模型可以大大提高大豆叶绿素含量的估算水平,当隐藏层节点数为4时,R2大于0.94,随着隐藏层节点数的增加,R2可高达0.99,表明神经网络模型可以大大提升高光谱反演大豆叶绿素含量的能力。 Chlorophyll is substance in vegetation for photosynthesis, ultimately affecting the net primary production, which can also indicate the healthy condition of vegetation living in a stressed environment. Hyperspectral remote sensing can provide a possibility for quick and accurate estimation of vegetation chlorophyll concentration in large areas. Soybean canopy reflectance data collected with ASD spectroradiometers (350~1050 nm), which were cultivated in water-fertilizer coupled control conditions, and chlorophyll content data were collected simultaneously. First, correlation between reflectance, derivative reflectance against chl-A and chl-B was conducted; second, RVI, RARSa and PSSRb regressed against chl-A and chl-B; and finally, ANN-BP was established for soybean chlorophyll concentration estimation, which had different nodes in hidden layers. It was found that soybean canopy reflectance shows a negative relationship with chl-A and chl-B, while it shows a positive relationship with chl-A and chl-B in near infrared region. Reflectance derivative has an intimate relationship with chl-A and chl-B in blue, green and red edge spectral region, with the maximum correlation coefficient in red edge region. Chlorophyll specified absorption vegetation index has intimate relationship with chl-A and chl-B, with regression determination coefficient R^2 greater than 0. 736. ANN-BP model can greatly improve soybean chlorophyll concentration estimation accuracy. Determination coefficient (R^2 = 0.94) obtained with four nodes in hidden layers, however, R^2 still can be improved with nodes in hidden layers increasing, and R^2 reached 0.98 with six nodes in hidden layers. By above analysis, it indicated that, ANN-BP model can be applied to in-situ collected hyperspectral data for vegetation chlorophyll content estimation with quite accurate prediction, and in the future, ANN-BP model still should be applied to hyperspectral data for other vegetation biophysical and biochemical parameters estimation.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2006年第8期16-21,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 中国科学院知识创新重大项目(KZXL-SW-19) 自然科学基金项目(40401003)
关键词 高光谱 叶绿素含量 植被指数 ANN-BP hyperspectral chlorophyll concentration vegetation index ANN-BP
  • 相关文献

参考文献23

  • 1Lichtenthaler H K.The stress concept in plants:An introduction.Annals of the New York Academy of Science,1998,851:187-198.
  • 2Myneni R B,Hall F G,Sellers P J,et al.The interpretation of special vegetation indexes[J].IEEE Trans on Geoscience remote sensing,1995,33:481-486.
  • 3Myneni R B,Hall F G,Sellers P J,et al.The interpretation of special vegetation indexes[J].IEEE Trans on Geoscience remote sensing,1995,33:481-486.
  • 4Jacquemoud S,Bacour C,Poilve H,et al.Comparison of four radiative transfer models to simulate plant canopies reflectance:direct and inverse mode[J].Remote Sensing Environment,2000,74(4):417-481.
  • 5刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283. 被引量:207
  • 6Haboudanea D,Miller J R,Pattey E,et al.Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J].Remote Sensing of Environment,2004,90(1):337-352.
  • 7Markwell J,Osterman J,Mitchell J L.Calibration of the Minolta SPAD-502 leaf chlorophyll meter[J].Photosynthesis Research,1995,46:467-472.
  • 8Kokaly R F,Clark R N.Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J].Remote Sensing of Environment,1999,67:267-287.
  • 9Curran P J,Dungan J L,Peterson D L.Estimating the foliar biochemical concentration of leaves with reflectance spectrometry:Testing the Kokaly and Clark methodologies[J].Remote Sensing of Environment,2001,76:349-359.
  • 10Combal B,Baret F,Weiss M,et al.Retrieval of canopy biophysical variables from bi-directional reflectance:using prior information to solve the ill-posed inverse problem[J].Remote Sensing of Environment,2003,84(1):1-15.

二级参考文献36

  • 1ZHAO Chun-Jiang, HUANG Wen-Jiang, WANG Ji-hua, YANG Min-hua and XUE Xu-zhang( National Engineering Center for Information Technology in Agriculture , Beijing 100089 , P. R . China).The Red Edge Parameters of Different Wheat Varieties Under Different Fertilization and Irrigation Treatments[J].Agricultural Sciences in China,2002,1(7):745-751. 被引量:16
  • 2浦瑞良,宫鹏,约翰R.米勤.美国西部黄松叶面积指数与高光谱分辨率CASI数据的相关分析[J].环境遥感,1993,8(2):112-125. 被引量:30
  • 3张宪政 陈凤玉.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994.20-21.
  • 4Huete A R, R D Jackson.Spectral response of plant canopy with different soil backgrounds[J].Remote Sensing of Environment, 1985, (17):37-53.
  • 5Shibayama M, Y Akiyama.Estimating grain yield of maturing rice canopy using high spectral resolution reflectance measurements.Remote Sensing of Environment, 1991, (36):45-53.
  • 6Strachana I B, E Pattey,J B Boisvert.Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance[J].Remote Sensing of Environment, 2002,(80): 213- 224.
  • 7Bouman B A.Accuracy of estimating the leaf area index from vegetation indices derived from crop Reflectance characteristics, a simulation study[J].Int.J.Remote Sens.1992,(13): 3069-3084.
  • 8Brogea N H, Mortensen J V. Deriving green crop areaindex and canopy chlorophyll density of winter wheat from spectral reflectance data [J]. Remote Sensing of Environment, 2002,81: 45- 57.
  • 9Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images [J]. Remote Sensing of Environment, 1996,55 : 153- 162.
  • 10Chason J W, Balsocchi D D, et al. A comparion of direct and indirect methods for estimating forest canopy leaf area [J]. Agricultural and Forest Meterology, 1991,57: 107- 128.

共引文献413

同被引文献1106

引证文献91

二级引证文献926

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部