期刊文献+

复杂网络上的交通动力学 被引量:2

Traffic Dynamics on Complex Networks
下载PDF
导出
摘要 本文提出了一个网络上的简单交通流模型。对于规则网络和无标度网络来说,都存在着从自由相到堵塞相的尖锐相变。相变点的值可以用来衡量一个网络处理信息的能力,它是由网络本身的拓扑结构决定的。随着网络节点N的增加,网络的相变点在带周期边界的规则网格是NO5量级的、而对于无标度网络则几乎不变。模拟结果与理论分析很好地吻合。 In this paper, we propose a simple model for traffic dynamics on networks. For both homogeneous and heterogeneous networks, there exists a phase transition from free phase to congested phase. The value of transition point can be considered as a measurement of network communication ability, which is much affected by the topology of networks. It scales as N0.5 in square lattice while varies slightly with N in scale-free network when N is not very large, where N denotes the number of nodes. The simulation results agree with the theoretical estimation in quality.
出处 《ITS通讯》 2006年第2期11-13,共3页
关键词 复杂网络 交通动力学 无标度网络 通信能力 Complex Networks, Traffic Dynamics, Scale-free Networks, Communication Ability
  • 相关文献

同被引文献30

  • 1CHANDRA A K. Jamming of directed traffic on a square lattice[ J]. J Stat Mech, 2006(8) :P08005.
  • 2JIANG Rui, HU Mao-bin, WANG wen-xu. Traffic dynamics of packets generated with non-homogeneously selected sources and destinations in scale-free networks[ Z]. 2007.
  • 3PIPES L A. An operational analysis of traffic dynamics[J]. Journal of App Phys, 1953, 24: 274-281.
  • 4NAGEL K, SCHRECKENBERY M. A cellular automation model for freeway traffic[J]. ,Journal Plays I, 1992,9(12) : 2221-2229.
  • 5BIHAM O, MIDDLETON A A, LEVINE D A. Self-organization and a dynamical transition in traffic flow models [ J ]. Phys Rev A, 1992, 46: 6124-6127.
  • 6HELBING D. Derivation and empirical validation of a refined traffic flow model[J]. Physica A, 1996, 233(1-2) : 253-282.
  • 7HOOGENDOORN S P, BOVY P H L. Continuum modeling of multiclass traffic flow[J]. Trans on Res B, 2000, 34(2) : 123-146.
  • 8HELBING D, HENNECKE A, SHVETSOV V, et al. MASTER: macroscopic traffic simulation based on gas-kinetic, nonlocal traffic model[J]. Trans on Res B, 2001,35(2) : 183-211.
  • 9DAGANZO C F. Requiem for second-order fluid approximation of traffic flow[J]. Trans on Res B, 1995, 29(4) : 277-286.
  • 10HEIDEMANN D. Some critical remarks on a class of traffic flow models[J]. Trans on Res B, 1999, 33(2) : 153-155.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部