期刊文献+

一类高阶泛函微分方程的强迫振动性

Forced oscillation of a class of high order functional differential equations
下载PDF
导出
摘要 通过对一类高阶泛函微分方程的强迫振动性的研究,利用积分、上下极限和函数极值的技巧与方法,构造出一个新的函数,获得了该方程解的振动性的一个新的充分条件,改进和推广现有文献[4-6]中的部分结论。 Through studying the forced oscillation for a class of high order functional differential equations, using the methods and techniques of integration,superior limit and inferior limit and functional extremum, constructing a new function, we obtain a new sufficient condition for all its solutions oscillating. The partial results of references [4-6] have been extended and raised.
作者 黄辉 唐清干
出处 《桂林电子工业学院学报》 2006年第4期268-270,共3页 Journal of Guilin Institute of Electronic Technology
关键词 泛函微分方程 振动性 强迫项 最终正解 functional differential equation oscillation forced term ultimate positive solution
  • 相关文献

参考文献9

  • 1陈祥平,任崇勋.一类高阶非线性泛函微分方程的振动性[J].Journal of Mathematical Research and Exposition,2000,20(3):416-420. 被引量:2
  • 2HARDY G H.LITTLEWOOD J E,POLY G.Inequalities[M].2nd Editon.Cambridge:Cambridge University Press,1988.
  • 3ZOU RUI BIAO,YANG XUE GONG.Forced oscillation of a cllass of nonlinear higher order functional differential equation[J].Hunan Agicultural University (Natural Sciences),2003,29(2):167-170.
  • 4KARTSATOS A G.On the maintenance of oscillation under the effect of a small forcing term[J].Differential equations,1971,10:355-363.
  • 5OU C H,WONG J S W.Forced oscillation of nth-order functional differential equations[J].Math.Anal.Appl,2001,262:722-732.
  • 6WONG J S W.Oscillation criteria for a forced second-order nonlinear differential equation involving general means[J].Math.Anal.Appl,2000,247:489-505.
  • 7李美丽,魏翠萍.二阶泛函微分方程的强迫振动[J].中北大学学报(自然科学版),2006,27(2):160-162. 被引量:2
  • 8KITAMURA Y.Oscillation of functional differential equations with general deviating arguments[J].Hiroshima Math J,1985,15:445-491.
  • 9KARTSATOS A G.Maintenance of oscillations under the effect of a periodic forcing term[J].Proc Amer Math Soc,1972,33:377-383.

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部