期刊文献+

Whitham-Broer-Kaup方程的行波解分支 被引量:1

Bifurcations of Traveling Wave Solutions of Whitham-Broer-Kaup Equations
下载PDF
导出
摘要 通过使用平面动力系统的分支理论来研究Whitham-Broer-Kaup方程的孤立波和扭子波分支,证明了孤立波和扭波存在性.孤立波和扭子波精确参数表示都能得到. The bifurcations of solitary wave and kink waves for Whitham - Broer - Kaup equations are studied by using the bifurcation theory of planar dynamical systems. The existence of solitary waves and kink waves are proved. Explicit exact parametric representations of solitary waves and kink waves are obtained.
出处 《昆明理工大学学报(理工版)》 2006年第4期121-124,共4页 Journal of Kunming University of Science and Technology(Natural Science Edition)
关键词 行波解 孤立波 可积系统 浅水波方程 traveling wave solutions solitary wave integrable system shallow water wave equations
  • 相关文献

参考文献5

  • 1Xie F,Yan Z Y,Zhang H Q.Explicit and exact travelling wave solutions of Whitham-Broer-Kaup shallow water equations[J].Phys Lett A,2001 (285):76-80.
  • 2Yan Z Y.Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation.Ⅱ:Solitary pattern solutions[J].Chaos,Soliton and Fractals,2003 (18):869-880.
  • 3Chow S N,Hale J K.Method of bifurcation theory[M].New York:Springer-Verlag,1981.
  • 4Guckenheimer J,Holmes P J.Nonlinear oscillations,dynamical systems and bifurcations of vector fields[M].New York:Springer-Verlag,1983.
  • 5Li J B,Liu Z R.Smooth and non-smooth travelling waves in a nonlinearly dispersive equation[J].Appl Math Modelling,2000,25:41-56.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部