期刊文献+

数值模拟自然对流对直拉单晶硅的影响(英文) 被引量:3

Numerical Simulation of the Natural Convection Influence on Silicon Single Crystal by CZ
下载PDF
导出
摘要 在直拉单晶硅生长的过程中,自然对流对晶体界面的形状、温度场及应力分布影响很大。本文采用二维模型对熔体内自然对流对单晶硅的影响作了数值模拟,在低雷诺数时采用层流模型,高雷诺数时采用紊流模型,Gr的变化范围从3×106到3×1010,这样涵盖了从小尺寸到大尺寸的直拉单晶硅生长系统。数值结果表明熔体的流动状态不仅与熔体的Gr有关,还与熔体高度和坩埚半径的比值密切相关。当Gr>108时,熔体内确实存在紊流现象,层流模型不再适合,随着Gr的增大,紊流现象加剧,轴心处的等温线变得更为陡峭,不利于晶体生长。 Natural convective has significant effects on the crystal-meh interface shape, temperature field and the stress distribution in Czochralski (CZ) crystal growth. In this paper, two-dimensional numerical simulations were carried out to clarify the effect of buoyancy force on melt motion in a CZ crystal system. At low Reynolds numbers, a laminar model was used, while at large Reynolds numbers, a turbulence model was employed. The present paper investigates the natural convection from a low Grashof number 3 × 10^6 to a large Grashof number 3 ×10^10 ,which corresponding to small-size CZ system to large-size CZ system. The numerical results show that the flow state is not only related to Grashof number but also the ratio of the melt height to the crucible radius. When Gr is large than a critical value 10^8, the flow becomes unstable, the laminar model is no longer suitable, and it is found that with the increase of Grashof number, the turbulence flow and intensity becomes stronger and temperature gradient near the interface becomes sharper, which is harmful to the crystal growth.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2006年第4期696-701,695,共7页 Journal of Synthetic Crystals
基金 ProjectsupportedbythePhDStart-upFundofBeijingUniversityofTechnoloy(No.127-00227)
关键词 直拉单晶硅 自然对流 数值模拟 Czochralski silicon natural convective numerical simulation
  • 相关文献

参考文献7

  • 1Xiao Q,Derby J J.Three-dimensional Melt Flows in Czochralski Oxide growth:High-resolution,Massively Parallel,Finite Element Computations[J].J.Crystal Growth,1995,15:169-181.
  • 2Oshima M,Taniguichi N,Kobayashi T.Numerical Investigation of Three-dimensional Melt Convection with the Magnetic Czochralski method[J].J.Crystal Growth,1994,137:48-53.
  • 3Kobayashi S,Miyahara S,Fujiwara T.Turbulent Heat Transfer Through the Melt in Silicon Czochralski Growth[J].J.Crystal Growth,1991,109:149-154.
  • 4Zhang T,Ladeinde F,Zhang H.A Comparison of Turbulence Models for Natural Convection in Enclosures Applications to Crystal Growth Processes[J].Proc.31st National Heat Transfer Conference,HTD,1996,323:17-26.
  • 5Ren B Y,Zhang Z C,Liu C C.Study of Relationship Between Temperature Distribution[J].Chinese Science Abstract,2000,6:1028-1030.
  • 6Jones W P,Launder B E.The Calculation of Low-reynolds Number Phenomena with a Two-equation Model of Turbulence[J].Int.J.Heat Mass.Transfer.,1973,16:1119-1130.
  • 7Zhang T,Ladeinde V,Prasad V.Turbulent Convection in a Czochralski Silicon Melt[J].J.Heat Transfer,1999,121:1027-1040.

同被引文献19

  • 1宇慧平,隋允康,张峰翊,常新安,安国平.φ300mm的大直径直拉单晶硅勾形磁场下生长的数值模拟[J].无机材料学报,2005,20(2):453-458. 被引量:12
  • 2Midkiff S P. Languages and compilers for parallel computing[M]. Springer, 2001: 21-55.
  • 3Buckle U, Schafer M. Benchmark resuhs for the numerical simulation of flow in Czochralski crystal growth [J]. Journal of Crystal Growth, 1993, 126(4): 682-694.
  • 4Xu D, Shu C, Khoo B C. Numerical simulation of flows in Czochralski crystal growth by second-order upwind Quick scheme [J]. Journal of Crystal Growth, 1997, 173(1-2): 113-131.
  • 5张海燕.钨酸钡晶体点缺陷的电子结构研究[D].上海:上海理工大学硕士学位论文,2008.
  • 6Huanga L Y,Leea P C,Hsieh C K,et al.On the Hot-zone Design of Czochralski Silicon Growth for Photovoltaic Applications[J].J.Crystal Growth,2004,261:433-443.
  • 7Smirnova O V,Durnev N V,Shandrakova K E,et al.Optimization of Furnace Design and Growth Parameters for Si CZ Growth,Using Numerical Simulation[J].J Crystal Growth,2008,310:2185-2191.
  • 8Sim B C,Jung Y H,Lee J E,et al.Effect of the Crystal-melt Interface on the Grown-in Defects in Silicon CZ Growth[J].J.Crystal Growth,2007,299:152-157.
  • 9Jana S,Dost S,Kumar V,et al.A Numerical Simulation Study for the Czochralski Growth Process of Si Under Magnetic Field[J].International Journal of Engineering Science,2006,44:554-573.
  • 10Kasap S,Capper P.Springer Handbook of Electronic and Photonic Materials[M].New York:McGraw-Hill,2006:255-269.

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部