期刊文献+

GPS动态定位的自适应卡尔曼滤波算法研究 被引量:3

GPS Dynamic Orientation's Adaptive Kalman Filtering Algorithm
下载PDF
导出
摘要 将卡尔曼滤波方法应用于GPS定位解算模型中就可以显著减小定位误差,提高定位精度.但在实际系统中系统状态的精确描述是未知的,在动态滤波中可能会遇到滤波发散和计算发散等问题.在分析了GPS定位误差源的基础上,建立动态GPS定位滤波的一般模型,同时采用了Sage自适应和基于“当前”加速度模型的自适应滤波方法,联合对系统状态噪声方差和量测噪声方差进行自适应修正,有效的解决了动态GPS定位中出现因系统噪声和量测噪声未知而导致的滤波发散问题.同时,联合采用矩阵平方根分解和衰减记忆滤波的方法,有效的解决了误差均方差阵在计算过程中因舍入误差而造成的病态或负定而造成的滤波计算发散问题.计算机仿真结果表明,本算法对滤除随机噪声有良好的效果. With the measurement series for GPS and establishing a kinematics model to describe the motion of the user, the errors will be decreased and the positioning precision will be increased when applying the Kalman filtering in GPS positioning computation model. However, we have so great difficulty in accurately describing the state of the system that we barge up against some problem “such as filtering divergence and computational divergence. The article puts forward a general model base on the foundation of analyzing error's reasons, and then, establish a adaptive model base on Sage adaptive and “current” acceleration model, simultaneously solve the filtering divergence in the dynamics filer due to the unknown of the system noise and measurement noise. During the calculation of Kalman filter, using square-root matrix decompounds and faded-memory method to avoid the computational divergence, which is conduced by the accumulate of round off error. At the end of this paper we stimulated the designed arithmetic, the result indicates that the effect of our designed arithmetic is satisfactory.
出处 《导航》 2006年第1期39-49,共11页
基金 国家自然科学基础资助项目(项目编号:49901013),四川省教育厅重点自然基金项目(2002A049).
关键词 卡尔曼滤波 GPS 自适应 平方根分解 衰减记忆 Kalman Filter GPS Adaptive Square-Roots Decompounds Faded-Memory
  • 相关文献

同被引文献24

  • 1倪巍伟,陆介平,陈耿,孙志挥.基于k均值分区的数据流离群点检测算法[J].计算机研究与发展,2006,43(9):1639-1643. 被引量:20
  • 2周文霞,徐建闽,刘正东.基于卡尔曼滤波算法的公交车辆行程时间预测[J].交通标准化,2007,35(2):174-177. 被引量:10
  • 3Kuehipudi Chandra Mouly, Chien Steven I J. Development of a hybrid model for dynamic travel time prediction[ C]// Transportation Research Board, Annual Meeting. Washington DC,2002.
  • 4Lin Weihua, et al. Arterial travel time estimation for advanced traveler information systems [ C ]//Proceedings of the 82th Annual Meeting of the Transportation Research Board. Washington DC, USA, National Academies Press,2003.
  • 5Robinson Steve,et al. Modeling urban link travel-time using data from inductive loop detectors [ C ]//World Conference on Transport Research. Istanbul,Turkey,2004.
  • 6Bajwa S I, Chnng E, Kuwahara M. A travel time prediction method based on pattern matching technique [ C]//21st ARRB and 11th REAAA Conference. Cairns ,Austraha,20a3.
  • 7Van Lint W C. Reliable Travel Time Prediction for Freeways [ M ]. Delft, Netherlands : Delft University Press,2004.
  • 8Ishak S, Al-Deek H. Performance evaluation of short-term time-series traffic prediction model[ J ]. Journal of Transportation Engineering,2002,128 (6) :490-498.
  • 9D' Angelo M P,A1-Deek H M,Wang M C. Travel-time Prediction for Freeway Corridors [ R ]. Transportation Research Record 1676 ,Washington DC, 1999 : 184-191.
  • 10魏簧.智能公交系统中车辆站点间运行时间预测理论和方法研究[D].上海:上海理工大学计算机学院博士学位论文,2000.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部