摘要
研究了一个呼吸动力学时滞微分方程模型.x(t)=1-αx(t)xn(t-τ)1+xn(t-τ).通过利用一种映射方法得到了该系统平衡点全局吸引的充分条件.所得结论优于已有的结果.
The scalar differential delay model X(t)= 1-ax(t) x^n(t-τ)/[1+x^n(t-τ) is studied in the present paper.By using the mapping method we obtain some conditions under which the equilibrium is globally attractive.
出处
《大学数学》
北大核心
2006年第4期44-49,共6页
College Mathematics
关键词
时滞微分方程
平衡点
全局吸引性
differential delay equations
equilibrium point
global attractivity