期刊文献+

一个呼吸动力学模型的全局吸引性(英文)

Global Attractivity in a Model of Respiratory Dynamics
下载PDF
导出
摘要 研究了一个呼吸动力学时滞微分方程模型.x(t)=1-αx(t)xn(t-τ)1+xn(t-τ).通过利用一种映射方法得到了该系统平衡点全局吸引的充分条件.所得结论优于已有的结果. The scalar differential delay model X(t)= 1-ax(t) x^n(t-τ)/[1+x^n(t-τ) is studied in the present paper.By using the mapping method we obtain some conditions under which the equilibrium is globally attractive.
作者 李林
出处 《大学数学》 北大核心 2006年第4期44-49,共6页 College Mathematics
关键词 时滞微分方程 平衡点 全局吸引性 differential delay equations equilibrium point global attractivity
  • 相关文献

参考文献10

  • 1Glass L and Mackey M C. Pathological conditions resulting from instabilities in physiological control systems[J].Ann. New York Acad. Sci. 1979, 316: 214-235.
  • 2Murry J D. Mathematical Biology[M]. New York, Springer-Verlag: 1989.
  • 3Cao Y and Gard T C. Ultimate bounds and global asymptotic stability for differential delay equations[J]. Rocky MountainJ. Math, 1995,25(1):119-131.
  • 4Freedman H I and Gopalsamy K. Global stability in time-delayed single-species dynamics[J]. Bull. Math. Biol.1986, (48) : 483- 492.
  • 5Gopalsamy K, Kulenovic M R S and Ladas G. Oscallistlons and global attractivity in respiratory dynamics[J].Dynamics Stability Systems, 1989, 4(2): 131-139.
  • 6Qian C. Global attractivity in nonlinear delay differential equation[J]. J. Math. Anal. Appl, 1996, 197: 529-547.
  • 7Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. Boston, Academic Press,1993.
  • 8Hale J K. Theory of Functional Differential Equations[M]. New York/Berlin, Springer-Verlag, 1977.
  • 9Luo Jiaowan and Yu Jian she. Global asymptotic stability of nonautonomous mathematical ecological equation with distributed arguments[J]. Acta Math. Sinica, 1998, 41(6): 1273-1282.
  • 10Weng Peixuan. Oscilliation and global attractivity of periodic solution in a model of respiratory dynamics[J]. J of Biomath, 1995, 10(1):14--20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部