摘要
设A是一个m×m可逆矩阵,称使得An=kE(E为单位矩阵)对某个实数k成立的最小正整数n为A的阶,记为O(A).本文证明,在整数环上,2×2矩阵方程An=kE(det(A)≠0)有解当且仅当矩阵A的阶O(A)∈{1,2,3,4,6}.
A matrix is said to have order n (possibly infinite) if m is the smallest positive integer with A^n=kE for some k∈R. In this paper, the author prove that the solution of the system of equations (a c b d )=k(1 0 0 1) with a,b,c, d∈ Z and ad-bc≠0 exists if and only if(a c b d ) has the order 1,2,3,4, or 6.
出处
《大学数学》
北大核心
2006年第4期71-74,共4页
College Mathematics
基金
国家自然科学基金项目(10161001)
广西科学基金项目(0575050)
关键词
环
矩阵
矩阵的阶
代数次数
ring
matrix
order of matrix
algebrica degree