期刊文献+

二阶非线性扰动微分方程的振动准则

Oscillation criteria for second order perturbed nonlinear differential equation
下载PDF
导出
摘要 讨论了二阶非线性扰动微分方程(a(t)x′(t))′+Q(t,x)=P(t,x,x′)的振动性,通过利用推广的Gronwall不等式理论,改进和推广了由W intner和Lighton[2]建立的关于微分方程(a(t)x′(t))′+q(t)x(t)=0的所有解振动的一个经典结果,最后的注解给出了充分的说明. The oscillation for second order perturbed nonlinear differential equation of the form ( a (t) x' (t) )' + Q(t,x) = P(t,x,x') is discussed. By using the generalized Gronwall inequality, improve and extend the classical result which is obtained by Wintner and Lighton for second order linear differential equation of the form ( a (t) x' (t) )' + q (t) x (t) = 0. Finally, the remark is also included to show the versatility of the result.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2006年第4期434-436,共3页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(1050101410571183 10471155) 华南理工大学自然科学基金资助项目
关键词 扰动微分方程 推广的Gronwall不等式 振动性 perturbed differential equation generalized Gronwall inequalities oscillation
  • 相关文献

参考文献4

  • 1LEIGHTON W. On self- adjonit differential equations of second order[J]. J London Math Soc, 1952, 27:37 -47.
  • 2GRACE S R, LALLI B S. Oscillation theorems for certain second order perturbed nonlinear differential equations[J]. J Math Anal Appl, 1980,77:205-214.
  • 3WONG J S, AGARWAL R P. Oscillation behavior of certain second order perturbed nonlinear differential equations[ J ]. J Math Anal Appl, 1996,198 : 337 -354.
  • 4WU HONGWU, WANG Q R, XU Y T. Oscillation and asymptotics for nonlinear second - order differential equations[J]. Comput Math Appl,2004, 48:61 -72.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部