期刊文献+

一类非自治变时滞Logistic方程的全局吸引性 被引量:1

Global attractivity for nonautonomous variable delay-Logistic equation
下载PDF
导出
摘要 主要研究一类可变时滞非自治Logistic方程的全局吸引性,通过分别研究非振动解和振动解的性质并使用一定的分析技巧结合不等式的方法,得到了方程的正平衡态为全局吸引子的新的充分条件,这些条件便于验证.所得到的结果推广并改进了相关文献中的一些结果,也完善并补充了非自治变时滞Logistic方程的全局吸引性问题的研究工作. Consider mainly the global attracivity of a class of the nonautonomous varied delay Logistic equation. By researching nonoscillation and oscillation and using unequality analysis method and some new techniques, some sufficient conditions for the positive steady state of the nonautonomous variable delay - Logistic equation having a global attractor are obtained. These sufficient conditions are convenient to verify. The obtained result extends and improves some related results in the literature, and is also a for nonautonomous variable delay -Logistic equation. supplyment of those results on ies the global attractivity for nonautonomous variable delay -Logistic equation.
作者 贾茗 申建华
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2006年第4期490-493,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10571050) 湖南省教育厅科学研究重点项目
关键词 全局吸引性 LOGISTIC方程 可变时滞 global attractivity Logistic equation varied delay
  • 相关文献

参考文献2

共引文献22

同被引文献5

  • 1[4]Gopalsamy K.Stability and oscillations in delay differential equations of population dynamics[M].Kluwer Academic Publishers Boston,1992.
  • 2[5]Yan Ju-rang,Zhao Ai-min,Nieto J J.Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems[J].Mathematical and Computer Modelling 2004,40 (5):509-518
  • 3[6]Huo Hai-feng,Li Wan-tong.Existence of positive periodic solution of a neutral impulsive delay predator-prey system[J].Applied Mathematics and Computation 2007,185 (1):499-507
  • 4[7]Gains R E.Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Springer-Verlag,Berlin,1977
  • 5桂占吉,陈兰荪.具有时滞的周期Logistic方程的持续性与周期解[J].Journal of Mathematical Research and Exposition,2003,23(1):109-114. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部