摘要
给出了含三个组分的具有时滞的生命能量系统模型,对一类特殊的生命能量系统模型———食物链模型给出了具体的讨论,根据儒歇定理及其推论,讨论其线性部分特征方程根的分布情况,并验证特征方程的横截条件是否成立,进而得到该系统的稳定性和Hopf分支产生的条件,详细地研究了生命能量模型的动力学性质,在生态学中有很重要的意义.
A delay -differential equation modeling a Life Energy System (LESM) with three components is investigated. In the part two, a food chain model of life energy system is discussed. By analyzing the distribution of the roots of the characteristic equation according to Rouche theorem and discussing whether the transversal condition is satisfied or not, the stable and Hopf bifurcation condition of LESM is obtained. The dynamics properties of LEMS are discussed detailedly in detail. It is very important to study LESM in ecology.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第4期498-501,505,共5页
Journal of Natural Science of Heilongjiang University
基金
中国博士后科学基金资助项目(2004036108)