期刊文献+

时滞生命能量系统模型的稳定性分析

Stability analysis for a model of Life Energy System with delays
下载PDF
导出
摘要 给出了含三个组分的具有时滞的生命能量系统模型,对一类特殊的生命能量系统模型———食物链模型给出了具体的讨论,根据儒歇定理及其推论,讨论其线性部分特征方程根的分布情况,并验证特征方程的横截条件是否成立,进而得到该系统的稳定性和Hopf分支产生的条件,详细地研究了生命能量模型的动力学性质,在生态学中有很重要的意义. A delay -differential equation modeling a Life Energy System (LESM) with three components is investigated. In the part two, a food chain model of life energy system is discussed. By analyzing the distribution of the roots of the characteristic equation according to Rouche theorem and discussing whether the transversal condition is satisfied or not, the stable and Hopf bifurcation condition of LESM is obtained. The dynamics properties of LEMS are discussed detailedly in detail. It is very important to study LESM in ecology.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2006年第4期498-501,505,共5页 Journal of Natural Science of Heilongjiang University
基金 中国博士后科学基金资助项目(2004036108)
关键词 生命能量系统模型(LESM) 时滞 稳定性 HOPF分支 Life Energy System (LESM) stability delay Hopf bifurcation
  • 相关文献

参考文献5

  • 1HUANG Xi. How do simple energy activities comprise complex behavior of life systems? A conceptual synthesis and decomposition of the energy structure of life systems[J]. Ecological Modelling, 2003,165:79 -81.
  • 2HUANG Xi, ZU Yuan- gang. The LES population model: essentials and relationship to the Lotka - Volterra model[ J ]. Ecological Modelling,2001,143:215 -225.
  • 3SONG Yong - li, HAN Mao - an, WEI Jun - jie. Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays[ J ]. Physica D, 2005,200 : 185 - 204.
  • 4黄樨.生命能量系统模型在种群生态学研究中的初步应用.非线性科学的理论,方法和引用[M].北京:科学出版社,185—193.
  • 5魏俊杰,阮士贵.中立型微分方程零解的稳定性与全局Hopf分支[J].数学学报(中文版),2002,45(1):93-104. 被引量:13

二级参考文献10

  • 1Brayton R.,Nolinear oscillations in a distributed network,Quart.Appl.Math.,1967,XXIV(4): 289-301.
  • 2Brayton R.,Bifurcation of periodic solutions in a nonlinear difference-differential equations of neutral type,Quart.Appl.Math.,1966,XXIV(3): 215-224.
  • 3Krawcewicz W.,Wu J.,Xia H.,Global Hopf bifurcation theory for condensing fields and neutral equations with applications to lo,less transmission problems,Canadian Appl.Math.Quart.,1993,1(2): 167-219.
  • 4Wu J.,Xia H.,Self-sustained oscillations in a ring array of coupled lossless transmission lines,J.Diff.Eqns.,1996,124(1): 247-278.
  • 5Ferreira J.,On the stability of a distributed network,SIAM.J.Math.Anal.,1986,17(1): 38-45.
  • 6Hale J.,Lunel S.V.,Introduction to Functional Differential Equations,New York: Springer-Verlag,1993.
  • 7Lopes O.,Stability and forced oscillations,J.Math.Anal.Apppl.,1976,55: 686-698.
  • 8Brumley W.E.,On the asymptotic behavior of solutions of differential-difference equations of neutral type,J.Diff.Equns.,1970,7: 175-188.
  • 9Dieudonne J.,Foundations of Modern Analysis,New York,London: Academic Press,1960.
  • 10Zheng Z.,Theory of Functional Differential Equations,Hefei: Anhui Education Press,1994 (in Chinese).

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部