期刊文献+

S-分布时滞静态神经网络模型的不变集和吸引集 被引量:3

Invariant and attracting sets of static neural networks with S-type distributed time delays
下载PDF
导出
摘要 用非负矩阵和微分不等式技巧研究了一类S-分布时滞静态神经网络模型的不变集和吸引集,给出不变集和吸引集的空间位置,并且用不变集和吸引集给出了对吸引子存在范围的估计以及平衡点是全局吸引子的充分条件. Invariant and attracting sets of static neural networks with S - type distributed delays are studied by using nonnegative matrices and differential inequalities technique. Spatial positions are given for the invariant and attracting sets. An estimate of the existence range of attractors is provided by using invariant and attracting sets. The sufficient condition of the equilibrium point being the global attractor is also given.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2006年第4期506-508,共3页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10171072)
关键词 静态神经网络 S-分布时滞 不变集 吸引集 static neural networks S -type distributed time delays invariant set attracting set
  • 相关文献

参考文献8

  • 1HOPFIELD J J. Neural networks and physical systems with emerging collective computational abilities[ J]. Proc Nat Aead Sci USA, 1982,79:2554 - 2558.
  • 2QIAO H. A reference model approach to stability of neural network[J]. IEEE Trans Syst Man Cybern, 2003, 33 (6) :925 -936.
  • 3WANG L S, XU D Y. Global asymptotic stability of bidirectional associative memory neural networks with S - type distributed delays[ J]. International Journal of Systems Science, 2002,33 ( 11 ) :869 -877.
  • 4王珉 王林山.S—分布时滞静态神经网络模型的全局渐近稳定性[J].山东大学学报,2005,33:5-5.
  • 5WANG L S, XU D Y. Asymptotic behavior of a class of reaction - diffusion with delays [ J ]. J Math Anal Appl, 2003,281 (2) :439 - 453.
  • 6ZHAO H Y. Invariant set and attractor of nonautonomous functional differential systems[ J ]. J Math Anal Appl, 2003,282:437 - 443.
  • 7HORN R A, JOHNSON C R. Matrix analysis[ M]. London:Cambridge Universily Press, 1990.
  • 8HALE J K. Theory of functional differential equations[ M]. New York: Springer - Verlag Inc, 1977.

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部