摘要
研究一类高阶非线性时滞差分方程Δd+1xn-1+pnf(xn-τ)+qng(xn-σ)=0的解的振动性和差分方程Δd+1xn-1+pnf(xn-τn)+qng(xn-σn)=0解的渐近稳定性,其中d为偶数,pn,qn≥0.τ,σ>0.τn,σn都是整数,f,g是非减函数,当x≠0时xf(x)-xg(x)>0.在文献[1-4]的基础上,给出其振动的充要条件,指出非振动解当n→+∞时渐近趋于零或趋于非零有限值时的充分条件.改进和推广了[5-6]相应的结果,且举出两例说明定理的应用.
Consider the oscillation of solutions of the higher order nonlinear difference equation with variable delay for △^(d+1) x(n-1)+pnf(x(n-τ))+qng(x(n-σ))=0 and asymptotic behavior of △^(d+1)x(n-1)+pnf(x(n-τn))+qng(x(n-σn))=0 where d is enven, Pn,qn≥0.τ,σ〉0.and τn,σn are integer number, f, g are non -decreasing function such that x≠0 xf(x)-xg(z)〉0 . Based on [1] - [4], A necessary and sufficient condition under which solutions are conditions. Some sufficient conditions under which the non - oscillatory solution of the equation tends to zero or finite value as n→∞ are obtained. Some results in [5 ] and [6] are extended and improved. Applications of main results are shown by two examples.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第4期532-535,共4页
Journal of Natural Science of Heilongjiang University
基金
四川省教育厅重点科研基金资助项目(2004A123)
关键词
高阶时滞差分方程
振动与渐近
最终正解
higher order delay difference equation
oscillation and asymptotic behavior
eventually positive solution