摘要
本文给出了利用图解分段确定卷积积分区间的一种方法,并举例说明了其应用及推广.利用本方法,只要知道被卷积两函数的有值区间端点,就能有规律地快速确定卷积积分中自变量t和哑变量τ的取值区间,计算的结果为闭合形式.该方法能有效地克服积分区间(或求和区间)的重复和遗漏问题,特别是在多分段有值函数卷积的计算中更显示出其优越性.
A method for determining the interval of convolution integrating by use of the graphic partition is given in this paper, and the application and promotion of this method are exemplified. By use of this method, the interval of independent variable t and the mute variable tin the convolution integral can be determined quickly, only if in the two convoluted functions which value of the end point of the interval is unequal to zero is known, and the computational result is in dosed form. This method can avoid the repetition and pretermission of integrating interval (or summarizing interval), especially in the convolution computation of multi-partition function.
出处
《大连大学学报》
2006年第4期103-107,共5页
Journal of Dalian University
基金
黄冈师范学院科学研究
青年科研基金项目(03CQ61)
关键词
卷积
积分区间
图解分段
convolution
integrating interval
graphic partition