期刊文献+

Banach空间中非扩张映象的几个收敛定理 被引量:2

Some Convergence Theorems for Nonexpansive Mappings in Banach Spaces
下载PDF
导出
摘要 在适当的条件下得出了Banach空间中非扩张映象的几个收敛性定理,所得结果改进和推广了文〔5,6,8,9,10,11,12〕的主要结果。 The purpose of this article is to study some convergence theorems for nonexpansive mappings in Banach spaces. Under proper conditions some convergence theorems are obtained which improve and extend some recent results [5,6,8,9,10, 11,12].
作者 吴定平
出处 《宜宾学院学报》 2006年第6期1-3,共3页 Journal of Yibin University
基金 四川省教育厅重点科研基金资助(2005A174)
关键词 非扩张映象 不动点 误差迭代 Nonexpansive Mapping Fixed Points Iterative Scheme with Errors.
  • 相关文献

参考文献12

  • 1[1]S.Reich,On the asymptotic behavior of nonlinear semigroups and the range of accretive operators,J.Math.Appl.,79(1981),113-126.
  • 2[2]L.S.Liu,Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space,J.Math.Anal.,194(1995),114-125.
  • 3[3]S.S.Chang,On Chidume's open questions and approximation solutions of multivalued strongly accretive mappings equations in Banach spaces,J.Math.Ana.Appl.,216(1997),94-111.
  • 4[4]S.Reich,Strong convergence theorems for resolvents of accretive mappings in Banach spaces,J.Math.Anal.Appl.,75(1980),287-292.
  • 5[5]S.S.Chang,Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces,J.Math.Anal.Appl.,2006(in press).
  • 6[6]S.S.Chang and D.P.Wu,Some convergence theorems for asymptotically nonexpansive mappings in Banach spaces,J.Math.Anal.Appl.,2006(in press).
  • 7[7]S.Reich,Some problems and results in point theory,Contem.Math.,21(1983),179-187.
  • 8[8]S.Reich,Some fixed point problems,Atti Accad.Naz.Lincei,57(1974),194-198.
  • 9[9]S.Reich,Approximating fixed points of nonexpansive mappings,Pan.American Math.J.,4(2) (1994),23-28.
  • 10[10]N.Shioji and W.Takahashi,Strong convergence of approximated sequence for nonexpansive mappings,Proc.Amer.Math.Soc.,125:12(1997),3641-3645.

同被引文献22

  • 1宋义生,沈熙林,陈汝栋.集值非扩张映象不动点迭代收敛性[J].纺织高校基础科学学报,2005,18(1):23-25. 被引量:2
  • 2吴定平.随机变分不等式和随机相补问题[J].四川师范大学学报(自然科学版),2005,28(5):535-537. 被引量:9
  • 3郭大均.非线性泛函分析.济南:山东科学技术出版社,2004.
  • 4[1]L B Ciric.A generalization of Banach contraction principle[J].Proc Amer.Math.Soc.,1974,45(1):267-273.
  • 5[2]L S Lin,Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spoces[J].Math.Anal.Appl.,1995,(194):114-127.
  • 6[3]S S Chang,Y J Cho,J K Kim.The equivalence between the convergence of mod ified Picard,modified Mann and modified lshikawa iterations[J].Math.Comput.Modelling,2003,(37):985 -991.
  • 7[4]B E Rhoades,Stefan,M Soltuz.The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically pseudo-contractive map[J].Mat h.Anal.Appl.,2003,(283):681 -688.
  • 8[5]B E Rhoades,Stefan,M Soltuz.The equivalence between the convergence of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strongly successively pseudo-contractive maps[J].Math.Anal.Appl.,2004,(289):,266 -278.
  • 9[6]X Weng.Fixed point iteration for for local strictly pseudoucntractive mapp ing[J].Proc.Amer.Math.Soc.,1991,727-731.
  • 10[7]D P Wu,S S Chang,G X Yuan.Approximation of common fixed points for a fa mily of finite nonexpansive mappings in Banach space[J].Nonlinear Analysis,2005,63(5):987 -999.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部