期刊文献+

自适应神经-模糊推理系统的混合协同微粒群算法进化设计 被引量:4

Evolutionary Design of Adaptive Neuro-Fuzzy Inference System Based on Hybrid Cooperative Particle Swarm Optimization
原文传递
导出
摘要 在分析自适应神经-模糊推理系统(ANFIS)结构和参数特点的基础上,定义一个布尔向量L作为网络的结构参数,与原来ANFIS的前件参数集一起构成了新的前件参数集{c,σ,L},并给出了一个新的网络输入输出关系表达式.针对该输入输出表达式,提出一种用于优化ANFIS前件参数集的混合协同微粒群算法.该将参数集L和{c,σ}分别放在两个子微粒群并根据各自不同的特点应用二进制PSO和GCPSO算法进化,两个子微粒群之间的协同由定义的一个协同函数实现,而网络的结论参数依旧用最小二乘法进行优化.应用该算法进行ANFIS网络结构和隶属函数参数的自适应设计,在Henon映射产生的混沌时间序列预测中显示了良好的性能. A new algorithm for design of adaptive neuro-fuzzy inference system (ANFIS) is proposed in this paper. In the proposed algorithm, a boolean variable L is defined as the network structural parameter and combined with the original reasoning parameter set. Under the new parameter set { c, σ, L } , a new expression relating input and output of ANFIS is obtained. Based on the new input-output expression, a hybrid cooperative particle swarm optimization (HCPSO) is proposed to optimize the parameters. In the proposed HCPSO, the parameter sets L and { c, σ } are placed in two subswarms and evolve according to binary PSO (BPSO) and guaranteed convergence PSO (GCPSO), respectively. A cooperative function is defined to cooperate the evolvement of the two subswarms. The output parameters of the system are optimized using Least Square Error (LSE) algorithm, The proposed algorithm can be used in adaptive design of ANFIS network architecture and membership function parameters. Simulation results indicate that the algorithm shows good performance in forecasting chaotic time seouence uenerated from Henon map.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2006年第8期48-54,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60474029) 湖南省教育厅科研资助项目(03C499)
关键词 自适应神经模糊推理 结构参数 混合协同微粒群算法 HENON映射 adaptive neuro-fuzzy inference system structural parameter hybrid cooperative PSO Henon map
  • 相关文献

参考文献14

  • 1Roger Jang J S,Sun C T,Mizutani E.Neuro-Fuzzy and Soft Computing[M].New York:Prentice Hall,1997.
  • 2陈非,敬忠良,姚晓东.一种模糊神经网络的快速参数学习算法[J].控制理论与应用,2002,19(4):583-587. 被引量:21
  • 3Behloul F,Lelieveldt B P F,Boudraa A,et al.Optimal design of radial basis function neural networksfor fuzzy-rule extraction in high dimensional data[J].Pattern Recognition,2002,35 (7):659-67.
  • 4张阿卜.基于减法聚类和自适应神经模糊推理系统的递阶模糊系统的设计[J].控制理论与应用,2004,21(3):415-418. 被引量:5
  • 5Hideyuki I,Toshio F,Takanori S,et al.Structure optimization of fuzzy neural network by genetic algorithm[J].Fuzzy Set and System,1995,71(3):257-264.
  • 6Sarimveis H,Alexandridis A,Tsekouras G,et al.A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space[J].Industrial and Engineering Chemistry Research,2002,41(5):751-759.
  • 7马铭,周春光,张利彪,窦全胜.基于递阶遗传算法的模糊系统优化设计[J].吉林大学学报(理学版),2004,42(4):559-564. 被引量:5
  • 8Shi Yuhui,Eberhart R.A modified particle swarm optimizer[A].Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,Alaska,USA,1998:67-73.
  • 9F.van den Bergh,Engelbrecht A P.Cooperative learning in neural networks using particle swarm optimizers[J].South Africa Computer Journal,2000,26:84-90.
  • 10王俊年,申群太,周少武,沈洪远.基于种群小生境微粒群算法的前向神经网络设计[J].控制与决策,2005,20(9):981-985. 被引量:13

二级参考文献42

  • 1谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 2Brits R, Engelbrecht A P, Fan den Bergh. A Niching Particle Swarm Optimizer[A]. Proc Conf on Simulated Evolution and Learning[C]. Singapore, 2002.
  • 3Brits R, Engelbrecht A P, Fan den Bergh. Scalability of Niche PSO[A]. Proc IEEE Int Conf on Intelligence Symposium[C]. Indianapolis, 2003: 228-234.
  • 4Fredric M Ham, Ivica Kostanic. Principles of Neurocomputing for Science and Engineering[M]. McGraw Hill, 2001.
  • 5Clerc M, Kennedy J. The Particle Swarm -- Explosion, Stability, Andconvergence in a Multidimensional Complex Space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 58-73.
  • 6Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better[J]. IEEE Trans on Evolutionary Computation, 2004 8(6): 204-210.
  • 7Ioan Cristian Trelea. Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection[J]. Information Processing Letters, 2003, 85: 317-325.
  • 8F van den Bergh. Particle Swarm Weight Initialization in Multi-layer Neural Networks[A]. Development and Pracrice of Artificial Intelligence Techniques[C]. Durban, 1999: 41-45.
  • 9F van den Bergh, Engelbrecht A P. Cooperative Learning in Neural Networks Using Particle Swarm Optimizers[J]. South Africa Computer J,2000, 26(11): 84 - 90.
  • 10F van den Bergh, Engelbrecht A P. Training Product Unit Networks Using Cooperative Particle Swarm Optimizers[A]. Proc IEEE Int Conf on Neural Networks[C]. Washington DC,2001.

共引文献40

同被引文献44

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部