期刊文献+

混合递进多目标进化算法及其在flow shop排序中的应用 被引量:8

A Hybrid Escalating Multi-objective Evolutionary Algorithm with Its Application to Flow Shop Problems
原文传递
导出
摘要 提出一种混合递进多目标进化算法(HEMEA):通过在进化搜索过程中引入递进模式的精英保留、群体重构以及可变邻域非劣解局部搜索策略,增强了算法的求解效率.将算法应用于一系列标准双目标flow shop算例及一个典型三目标flow shop问题,研究结果验证了算法的有效性. A hybrid escalating multi-objective evolutionary algorithm(HEMEA), which has a new evolution structure compared with the existing ones, was proposed in this paper. The new algorithm enhanced the efficiency of optimization by using an innovative escalating evolutionary scheme with an elitism selection and variable Pareto local search strategy. A series of bi-objective flow shop optimization problems from OR-Library and one typical tri-objective flow shop optimization problem which was first studied in Bagchi's work, were re-optimized by NSGA-II, MOGLS, ENGA and our HEMEA respectively. The comparison of the optimization results have shown the outstanding performance of HEMEA with respect to the others', which were well-known for their good performance in multiobjective evolutionary computation, thus, the effectiveness and efficiency of HEMEA was demonstrated.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2006年第8期101-108,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70371005 70521001) 新世纪优秀人才支持计划(NCET)
关键词 递进进化 多目标进化算法 局部搜索 FLOW SHOP escalating evolutionary multi-objective evolutionary algorithm local search flow shop
  • 相关文献

参考文献30

  • 1Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[A].Proceedings of 1st International Congress on Genetic Algorithms[C].Hillsdale,Lawrence Erlbaum,New York,1985:93-100.
  • 2Goldberg D E.Genetic Algorithms:In Search,Optimization and Machine Learning[M].New York:Addison-Wesley,1989.
  • 3Horn J,Nafpliotis N,Goldberg D E.A niched pareto genetic algorithm for multiobjective optimization[A].Proceedings of 1st IEEE Congress on Evolutionary Computation,IEEE World Congress on Computational Computation[C],1994,1:82-87.
  • 4Srinivas N,Deb K.Multiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation,1995,2(3):221-248.
  • 5Fonseca C M,Fleming P J.Genetic algorithms for multiobjective optimization:Formulation,discussion and generalization[A].Proceedings of 5th International Congress on Genetic Algorithms[C].Morgan Kaufmann,California,1993:416-423.
  • 6Coello C A C.An comprehensive survey of evolutionary-based multiobjective optimization techniques[J].Knowledge and Information System,1999,1(3):269-308.
  • 7Rudolph G.On a multi-objective evolutionary algorithm and its convergence to the pareto set[A].Proceedings of 1998 IEEE International Congress on Evolutionary Computational Intelligence[C],1998:511-516.
  • 8Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach[J].IEEE Transaction on Evolutionary Computation,1999,3:257-271.
  • 9Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].Evolutionary Computation,IEEE Transactions,2002,6(2):182-197.
  • 10Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the Strength Pareto Evolutionary Algorithm[R].Technical report TIK-Report 103,Swiss Federal Institute of Technology,2001.

共引文献1

同被引文献152

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部