期刊文献+

一类带饱和项互惠模型平衡态正解的存在性 被引量:2

The existence of positive solutions of the steady state system for cooperative model with saturation terms
下载PDF
导出
摘要 研究了一类两个物种同时带有饱和项的互惠模型在第一边界值条件下的平衡态正解的存在性.首先用单调解的方法给出了此解的先验估计,然后利用局部分歧理论研究了在λ1-c<a<λ1和a>λ1两种情况下模型分别在两个半平凡解上出现的局部分歧现象,并证明了分别在分歧点(β,0,θβ)和(b′,θa,0)附近存在正解;最后利用全局分歧理论研究了其整体分歧,从而证明了这两种情况下模型存在平衡态正解. The existence of positive solutions of the steady-state system are discussed for cooperative model with saturating terms for two species under the first boundary conditions. First, the prior estimate of the solutions is given by the monotone method; by means of local bifurcation theory, the system bifurcations at two semi-trivial solutions for two cases( λ1 - c 〈 a 〈 λ 1 and a 〉 λ 1 ) are studied, respectively. It is proved that positive solutions exist in some neighborhoods of (β,0,θβ) and (b', θa, 0 ), respectively. Finally, the global bifurcations are investigated by the global bifurcation theory, and the existence of positive solutions of the steady-state system for the two cases are obtained accordingly.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期14-18,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10071048)
关键词 主特征值 平衡态正解 全局分歧 principal eigenvalue coexistence state global bifurcation
  • 相关文献

参考文献12

  • 1Lou Y.Necessary and sufficient condition for the existence of positive solutions of certain cooperative system[J].Nonlinear Analysis,1996,26(6):1 079-1 095.
  • 2Korman P,Leung A.On the existence and uniqueness of positive steady state in the Volterra-Lotka ecological models with diffusion[J].Application Analysis,1987,26:145-160.
  • 3Li Z,Mottoni P D.Bifurcation for some systems of cooperative and predator-prey type[J].Journal of Partial Differential Equations,1992,5:25-36.
  • 4Kim K I,Lin Z G.Blowup in a three-species cooperating model[J].Applied Mathematics Letters,2004,17:8994.
  • 5Wu J H.Coexistence state for cooperative model with diffusion[J].Computers Mathematics with Application,2002,43:1 277-1 290.
  • 6李艳玲,马逸尘.具有饱和项的互惠模型正解的存在性[J].西安交通大学学报,2003,37(6):650-652. 被引量:11
  • 7Gui C F,Lou Y.Uniqueness and nonuniqueness of coexistence state in the Lotka-Volterra competition model[J].Communications on Pure and Applied Mathematics,1994,47:1 571-1 594.
  • 8Rabinowitz P H.Some global results for nonlinear eigenvalue problems[J].Journal of Function Analysis,1971,7:487-513.
  • 9王治国,李艳玲.一类三物种竞争-互助型反应扩散方程解的渐近行为[J].陕西师范大学学报(自然科学版),2005,33(1):15-18. 被引量:3
  • 10Smoller J.Shock wave and reaction diffusion equations[M].New York:Springer Verlag,1983.

二级参考文献22

  • 1[1]Blat J, Brown K J. Bifurcation of steady-state solutions in predator-prey and competition systems[J]. Proc Roy Soc Edinburgh, 1984, 97A: 21~34.
  • 2[2]Conway E D, Gardner R, Smoller J. Stability and bifurcation of steady state solutions for predator-prey equations[J]. Adv Appl Math, 1982, 3: 288~334.
  • 3[3]Li L, Ghoreshi A. On positive solutions of general nonlinear elliptic symbolic interacting systems[J]. Applicable Anal, 1991, 40: 281~295.
  • 4[4]Wu J H. Global bifurcation of coexistence state for the competition model in the hemostat[J]. Nonl Anal, 2000, 39: 817~835.
  • 5[5]Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability[J]. Arch Rational Mech Anal, 1973, 52: 161~180.
  • 6[6]Smoller J. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1983.
  • 7Korman P, Leung A. On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion [J]. Appl Anal, 1987,26(2): 145-160.
  • 8Li Z Y, De Mottoni P. Bifurcation for some systems of cooperative and predator-prey type [J]. J Partial Differential Equations, 1992,5: 25-36.
  • 9Casal A. Existence and uniqueness of coexistence states for a predator-prey model with diffusion [J]. Differential and Integral Equations, 1994,7(2) :411-439.
  • 10Wu J H. Coexistence state for cooperative model with diffusion [J]. Computers and Mathematics with Applications, 2002,43 : 1279-1290.

共引文献18

同被引文献8

  • 1曾宪忠,周树清.带有交叉扩散的捕食模型的非常数正稳态解的存在性[J].应用数学学报,2006,29(6):1063-1079. 被引量:3
  • 2Wu.J.H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Analysis,2000 (39) : 817-835.
  • 3Hsu.S.B, Waltman.P. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat [J]. SIAM J.Appl.Math., 1993 (53) : 1026-1044.
  • 4Wu.J.H. Coexistence state for cooperative model with diffusion[J]. Competition Mathematics with Application,2002 (43): 1277-1290.
  • 5Smoller.J. Shock Wave and Reaction Reaction-diffusion Equations.[M]New York: Springer Verlag,1983.
  • 6David J. Wollkind,John B. Collings,Jesse A. Logan. Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees[J] 1988,Bulletin of Mathematical Biology(4):379~409
  • 7李津,李艳玲.一类反应扩散方程组平衡解的局部分歧及稳定性[J].陕西师范大学学报(自然科学版),2008,36(2):15-18. 被引量:4
  • 8谢强军,李艳玲.一类捕食模型正平衡解的分支和稳定性[J].陕西师范大学学报(自然科学版),2004,32(1):18-20. 被引量:9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部