期刊文献+

初始损伤对钢的延性起裂韧性影响的细观力学分析 被引量:4

Meso mechanical analysis of effect of initial damage on ductile fracture initiation toughness of steel
下载PDF
导出
摘要 通过力学参数测量和微观观察研究了初始损伤对钢的延性起裂韧性影响.研究结果表明,随钢组织在预加载荷中产生的微孔洞初始损伤量的增加,其延性起裂韧性降低.并进一步对初始损伤孔洞在后续加载中的演化行为的细观有限元力学进行模拟计算及微孔洞初始损伤对钢的延性起裂韧性影响的机理进行了研究.计算结果表明,初始大尺寸孔洞长大速度比较快,且在这些孔洞之间存在变形局部化,容易诱发二次小孔洞的形核和长大,从而使一次初始大孔洞连接,使材料延性起裂,因而大尺寸初始损伤孔洞主导了材料的延性起裂.随初始损伤量的增加,大尺寸孔洞的数量和尺寸增加,使孔洞聚合(延性起裂)时的应变降低,这也就是随着预载荷比P0/Pgy的增加,材料的延性起裂韧性Pi/Pgy降低的细观力学原因. By using measurement of mechanical parameters and microscopic observation, the effect of initial damage on the ductile fracture initiation toughness of steel was investigated experimentally. The results showed that with increasing the amount of the initial void damage, the ductile fracture initiation toughness of steel decreases. The mechanism of this effect was further investigated by using finite element method to simulate the evolution of pre-damage voids during the subsequent loading process. The computation results showed that the initial voids with large size grew faster and deformation localization took place among these large voids. The deformation localization could promote nucleation and growth of secondary voids, leading to coalescences of the large voids and the ductile fracture initiation of material, so that the large initial voids dominated the ductile fracture initiation of material. With increasing the amount of initial damage, the number and size of large voids increased. This caused the decrease of strain of void coalescence (ductile fracture initiation), being the meso mechanical reason of decrease in ductile fracture initiation toughness Pi/Pgy with increase in pre-load ratio Po/Pgy.
出处 《兰州理工大学学报》 CAS 北大核心 2006年第4期34-37,共4页 Journal of Lanzhou University of Technology
关键词 初始损伤 断裂 韧性 有限元分析 应变 initial damage fracture toughness finite element analysis strain steel
  • 相关文献

参考文献12

  • 1KISER M T, ZOK F W, WILKINSON D S. Plastic flow and fracture of a particulate metal matrix composite [J]. Acta Mater, 1996,44(12):3 465-3 476.
  • 2TOHGO K, FUKUHARA D, HADANO A. The influence of debondlng damage on fracture toughness and crack tip field in glass-particle-reinforced nylon 66 composites [J]. Composites Science and Technology,2001,61(5) : 1 005-1 016.
  • 3SRIVASTAVA V K, MAILE K, BOTHE K.et al. Effect of damage on flexural modulus of C/C-SiC composites [J]. Materials Science and Engineering A, 2003,354 (2) : 292-297.
  • 4TALUKDAR P, SEN S K, GHOSH A K. Effect of fatigue damage on the dynamic fracture toughness of En-8-grade steel [J]. Metallurgical and Materials Transactions A, 2001,32A(10):2 547-2 552.
  • 5OZTURK A. The influence of cyclic fatigue damage on the fracture toughness of carbon-carbon composites [J], Composites Part A, 1996,27A(4) : 641-646.
  • 6MOSKOVIC R, LINGHAM I J ,CROCKER A G, et al. An experimental and theoretical consideration of the effect of prior creep damage on the heat affected zone fracture toughness of CrMoV steel [J]. Engineering Fracture Mecvhanies, 2004, 71(4):587-599.
  • 7J ABLOKOV V, GOTO D M, KOSS D A.Darnage accumulation and failure of HY-100 steel [J]. Merallurgical and Materials Transactions A, 2001,32A(12) : 2 985-2 994.
  • 8RAKIN M,CVIJOVIC Z,GRABULOV V,et a.Prediction of ductile fracture initiation using micromechanical analysis[J].Engineering Fracture Mechanics,2004,71(3):813-827.
  • 9王国珍,杨伟顺,马进,陈剑虹.初始损伤对不同钢组织延性起裂韧性的影响[J].安全与环境学报,2005,5(6):104-107. 被引量:2
  • 10GRIFFITH J R,OWEN D R J,An elastic-plastic stress analysis for a notched bar in plane strain bending[J].Journal of the Mechanics and Physics of Solids,1971,19(3):419-431.

二级参考文献22

  • 1王玉良,王国珍,陈剑虹.不同缺口尺寸试样在不同加载速率下缺口前的应力应变分布[J].兰州理工大学学报,2004,30(4):7-11. 被引量:3
  • 2王国珍,王红,陈剑虹.损伤对低合金钢缺口试样解理断裂韧性的影响[J].理化检验(物理分册),2005,41(2):61-64. 被引量:5
  • 3Kiser M T, Zok F W and Wilkinson D S. Plastic flow and fracture of a particulate metal matrix composite[J]. Acta Mater, 1996, 44( 12):3465 ~ 3476.
  • 4Tohgo K, Fukuhara D and Hadano A. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced nylon 66 composites[J]. Composites Science and Technology, 2001, 61(5): 1005 ~ 1016.
  • 5Srivastava V K, Maile K, Bothe K, et al. Effect of damage on flexural modulus of C/C-SiC composites[J]. Materials Science and Engineering A, 2003, 354(2): 292 ~ 297.
  • 6Talukdar P, Sen S K and Ghosh A K. Effect of fatigue damage on the dynamic fracture toughness of En-8-Grade steel[J]. Metallurgical and Materials Transactions A, 2001, 32A (10): 2547 ~ 2552.
  • 7Ozturk A. The influence of cyclic fatigue damage on the fracture toughness of carbon-carbon composites[J]. Composites Part A, 1996, 27A(4): 641 ~ 646.
  • 8Moskovic R, Lingham I J, Crocker A G, et al. An experimental and theoretical consideration of the effect of prior creep damage on the heat affected zone fracture toughness of CrMoV steel [J]. Engineering Fracture Mechanics, 2004, 71(4): 587 ~ 599.
  • 9Jablokov V, Goto D M, Koss D A. Damage accumulation and failure of HY-100 steel[J]. Metallurgical and Materials Transactions A, 2001,32A(12): 2985 ~ 2994.
  • 10Rakin M, Cvijovic Z, Grabulov V, et al. Prediction of ductile fracture initiation using micromechanical analysis [J]. Engineering Fracture Mechanics, 2004, 71(3): 813 ~ 827.

共引文献2

同被引文献43

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部