期刊文献+

抛物阱中束缚极化子的结合能 被引量:1

Binding energy of bound polaron in parabolic quantum well
下载PDF
导出
摘要 采用体纵光学(LO)声子近似,利用改进的LLP方法,对两次幺正变换处理电子?LO声子相互作用和施主离子?LO声子相互作用进行了研究.用第一次幺正变换求出极化势;用第二次幺正变换可计算出无限深抛物量子阱中束缚极化子的结合能.结果表明,在阱中心极化势对极化子能量的贡献较大.阱宽较小时,束缚极化子的结合能随阱宽L的增大而急剧减小;阱宽较大时,能量减小缓慢趋近于体材料的三维值. Using bulk longitudinal optical(LO) phonons approximation and improved LLP method, the interaction of electron with LO phonon and that of ion-donor with LO phonon were investigated by two canonical transformations. By using the first canonical transformation, the polarization potential can be gained. By using the second canonical transformation, the energy of the bound polaron in the infinite PQW could be work out. It was found that the contribution of the polarization potential to the energy of bound polaron was obvious in the center of the well; the binding energy of bound polaron decreased rapidly with well width (L) at the beginning, then decreased very slowly with L, and finally approached to the 3D-value of the bulk.
出处 《兰州理工大学学报》 CAS 北大核心 2006年第4期162-164,共3页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(10164003)
关键词 抛物阱 极化子 电子-声子相互作用 结合能 parabolic quantum well polaron electron-phonon interaction binding energy
  • 相关文献

参考文献14

  • 1MILLER R C, GOSSARD A C, KLEINMAN D A,et al. Parabolic quantum well with the GaAs-AlxGal-xAs system [J].Phys Rev B, 1984,29 (6) : 3 740-3 743.
  • 2GWINN E G, WESTERVELT R M, HOPKINS P F, et al.Quantum Hall effect in wide parabolic GaAs/AlxGa1-xAs well[J]. Phys Rev B,1989,39(9):6 260-6 263.
  • 3PLOOG K, DOHLER G H. Compositional and doping superlattlices in Ⅲ-V semiconductors [J]. Adv Phys, 1983,32(2) : 285-359.
  • 4SHAYEGAN N,SAJOTO T, SANTOS M,et al. Realization of a quasi-three-dimensional modulation-doped semiconductor structure [J]. Appl Phys Lett, 1988,53(9) : 791-793.
  • 5HAUPT R, WENDLER L Resonant magnetopolaron effects in parabolic quantum wells in a tilted magnetic field [J]. Z Phys B, 1994,94(2) :49-56.
  • 6REN Y H,CHEN Q H,YU Y B, et al. Ground-state description for polarons in parabolic quantum wells [J]. J Phys: Condens matter, 1998,10: 6 565-6 571.
  • 7SENGER R T, ERCELEBI A. Path-integral approximation on the stability of large bipolarons in quasi-one-dimensional confinement [J]. Phys Rev B, 2000,61(9):6 063-6 068.
  • 8ZHAO Feng-qi,LIANG X X,BAN S L. Energy lerels of a polaron in a parabolic quantumn well [J]. International Journal of Modem Physics B,2001,15(5):527-535.
  • 9ZHENG R S,BAN S L,LIANG X X. Effects of interface bulk optical phonons on polarons in a quantum well [J]. Phys Rev B, 1994,49(3):1 796-1 801.
  • 10LIANG X X,WANG X. Electron-Phonon interaction in a quantum well [J]. Phys Rev B, 1991,43(6) :5 155-5 158.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部