期刊文献+

基于复合余弦基神经网络的图像去噪滤波器 被引量:1

Compound-cosine-basis neural network filter for removing image noise
下载PDF
导出
摘要 针对图像受噪声干扰问题,提出了一种基于复合余弦基神经网络的图像去噪低通滤波器,以及保证该神经网络算法收敛的收敛定理,并给出了证明.该方法通过复合余弦基神经网络对幅频响应训练,调整网络权值,控制总的能量函数在给定的极小范围内,使得实际滤波器特性逼近理想图像去噪低通滤波器特性,从而达到满意的去噪效果.仿真结果显示,复合余弦基神经网络图像去噪滤波器各项特性接近理想滤波器.与传统的图像滤波器去噪方法比较,该方法设计的图像去噪滤波器具有更好的去噪效果. A 2-D lowpass filter based on the compound-cosine-basis neural network(CNNL) was proposed to overcome the defects of conventional methods for removing image noise, and the convergence theorem which ensures that this algorithm is convergent was presented. This method manages to have the characteristics of the real filters and approach the characteristics of the ideal lowpass filters for removing image noise through the training of the compound-cosine-basis neural network, which adjusts the weight of the network along with the training, so that the energy function is less than the infinitesimal, then good resuits of removing image noise could be attained. The simulation results reached nearly ideal filter characteristics, and the performance of removing image noise using this filter was compared with the median filter. The experimental results showed that the effect of this method for removing image noise is better.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第8期1348-1351,共4页 Journal of Zhejiang University:Engineering Science
关键词 余弦基 图像滤波器 神经网络 数字图像 学习率 compound-cosine-basis image filter neural network digital image training rate
  • 相关文献

参考文献6

  • 1WANG J H,LIN L D.An improved median filter using minmax algorithm for image processing[J].Electronics Letters,1997,33 (16):1362-1363.
  • 2LEE K C,SONG H J,SOHN K H.Detection-estimation based approach for impulsive noise removal[J].Electronics Letters,1998,34 (5):449-450.
  • 3陈旭锋,管志成.基于Mumford-Shah泛函的数字信号去噪算法[J].浙江大学学报(工学版),2004,38(10):1260-1264. 被引量:3
  • 4WANG J H,LIU W J.Histogram-based fuzzy filter for image restoration[J].IEEE Transactions on Systems,Man and Cybernetics,Part B,2002,32(2):230-238.
  • 5HAGANMT DEMUTHHB BEALEMH.Neural networks design[M].北京:机械工业出版社,2003..
  • 6LU W S,ANTONIOUS A.Two-dimensional digital filters[M].New York:Marcel Dekker,1992.

二级参考文献8

  • 1MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Communications on Pure Applied Mathematics, 1989, 42(4): 577 - 685.
  • 2CHANT F, VESE L A. A level set algorithm for minimizing the Mumford-Shah functional in image processing[EB/OL]. http: // www. math. ucla. edu/~lvese/papers/00938895, pdf,2003 - 05 - 10.
  • 3TSAI A, YEZZI A. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denosing, interpolation, and magnification [J]. IEEE Transaction on Image Processing, 2001, 10(8): 1169 - 1186.
  • 4CHAN T, SHEN J. Mathematical models for local nontexture inpaintings [J]. SIAM Journal on Applied Mathematics, 2001, 62(3): 1019 - 1043.
  • 5BAJAJ C L. Algebraic geometry and its applications[M]. New York: Springer, 1997: 491-506.
  • 6ESEDOGLU S, SHEN J. Digital inpainting based on the Mumford-Shah-Euler image model [J]. European Journal on Applied Mathematics, 2002, 13: 353 - 370.
  • 7POLLAK I, WILLSKY A S. Image segmentation and edge enhancement with stabilized inverse diffusion equation [J]. IEEE Transaction on Image Processing, 2000, 9(2): 256- 266.
  • 8MOREL J M, SOLIMINI S. Variational methods in image segmentation [M]. Boston, MA: Birkhauser, 1995.

共引文献4

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部