期刊文献+

多带抗噪声语音识别算法研究

A Research on Multi-band Method for Robust Speech Recognition
下载PDF
导出
摘要 根据Flether等人的研究,基于感知独立性假设的子带识别方法被用于抗噪声鲁棒语音识别。本文拓展子带方法,采用基于噪声污染假定的多带框架来减少噪声影响。论文不仅从理论上分析了噪声污染假定多带框架在识别性能上的潜在优势,而且提出了多带环境下的鲁棒语音识别算法。研究表明:多带框架不仅回避了独立感知假设要求,而且与子带方法相比,多带方法能更好的减少噪声影响,提高系统识别性能。 According to the researches of Flether, etc, some algorithms based Fletcher-Allen Principle were applied to robust speech recognition. This paper replaces sub-band method with multi-band method to reduce the effect of noise. This paper theoretically analyzes the predominance of the performance of multi-band method, and presents the new muhi-band robust speech recognition algorithm. Researches show that the multi-band algorithms not only discard the perception independent assumption, but also improve recognition performance more effectively than the sub-band analysis.
作者 孙暐 吴镇扬
出处 《信号处理》 CSCD 北大核心 2006年第4期559-563,共5页 Journal of Signal Processing
基金 国家自然科学基金(60272044) 973计划(2002CB312102)资助项目
关键词 语音识别 隐马尔可夫模型 听觉场景分析 Speech Recognition Hidden Markov Model Auditory Scene Analysis
  • 相关文献

参考文献14

  • 1刘海滨,吴镇扬,赵力,曾毓敏.非平稳环境下基于人耳听觉掩蔽特性的语音增强[J].信号处理,2003,19(4):303-307. 被引量:16
  • 2C. J. Leggetter, P. C. woodland, Maximum likelihood linear regression for speaker adaption of continuous density hidden Markov models[J], Computer speech and Language, 1995,vol 9:171 - 155.
  • 3M. J. F. Gales, P. C. Woodland, Mean and variance adaptation within the MLLR framework [ J ] , Computer speech and Language, 1996, vol 10:249 - 264.
  • 4Martin Cooke, Andrew Morris, Phil Green, Missing data techniques for robust speech recognition [ J ] , ICASSP 97,vol 2 : 863 - 866.
  • 5Gales M, Young S, Cepstral parameter compensation for HMM recognition in noise [ J ], Computer Speech and Language, 1993, 12(3):231-239.
  • 6Sangita R. Sharma, Multi stream approach to robust speech recognition[ D], Oregon Graduate Institute of Science and Technology, 1999.10.
  • 7Sangita Tibrewala, Hynek Hermansky, Subband based recognition of noisy speech [ J ], ICASSP 97, vol 2 : 1255 -1258.
  • 8Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of sound [ M ], Cambridge, Massachusetts, The MIT Press, 1990.
  • 9Christophe Ris, St6phane Dupont, Assessing local noise level estimation methods: application to noise robust ASR[ J ] , Speech Communication, 34,2001 : 141 - 158.
  • 10H. G.. Hirsh, Estimation of noise spectrum and its application to SNR estimation and speech enhancement, Technical Report TR-93-012, International Computer Science Institute, Berkeley, USA, 1993.

二级参考文献13

  • 1..http://spib.rice.edu/spib/select_noise.html.,.
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise. Proc. IF.F.F. ICASSP,Washinggton, DC, Apr. 1979; 208-211.
  • 3E Lockwood, J. Boudy. Experiments with a nonlinear spectral subtractor(NSS), hidden Markov models and projection for robust recognition in cars. Speech Communication. 1992; 11: 215-228.
  • 4Boh Lim Sim, Yit Chow Tong etc.. A parametric formulation of the generalized spectral subtraction method. IEEE.Transaction on Speech and Audio Processing. 1998; 6(4):328-337.
  • 5Nathalie Virag, Single channel speech enhancement based on masking properties of human auditory system. IEEE Transactions on Speech and Audio Processing. 1999; 7(2):126-137.
  • 6I. Cohen, B. Berdugo. Speech enhancement for nonstationary noise environments. Signal Processing. 2001; 81:2403-2418.
  • 7Y. Epharim, D. Malah. Speech enhancement using a minimum mean square log-spectral amplitude estimator.IEEE. Transactions on Acoustics. Speech, and Signal Processing. 1984; 32(6): 1109-1121.
  • 8E M. Crozier, B.M.G. Cheetham etc. Speech enhancement employing spectral subtraction and linear predictive analysis. Electronics Letters. 1993; 29 (12): 1094-1095.
  • 9R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE.Transactions on Speech and Audio Processing. 2001; 9(5):504-512.
  • 10T. Painter, A. Spanias. Perceptual coding of digital audio.Proe. Of the IEEE. 2000; 88(4): 451-512.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部