期刊文献+

周期非均匀采样信号的重建中的优化子频带划分 被引量:1

Optimal Subband Partition for Reconstruction of Bandlimited Signals from Periodically Nonuniform Samples
下载PDF
导出
摘要 对于周期非均匀采样,由于每个均匀采样流的采样率通常都是小于Nyquist率的,因此,采样信号频谱中会发生频率混叠。这表明在采样信号的重建频带内将会有多于1的谱分量。因为不是所有的与重建频带相交的谱分量都会覆盖整个重建频带,所以有必要将重建频带分成若干个子频带进行分析,构造内插函数,这样有利于减小重建所必需的最小采样率。本文提出一种优化的子频带划分方法,通过该方法在重建频带上定义子频带,能在保证重建所需的采样率最低的情况下使子频带的个数最少,这对于简化内插滤波器的结构有重要的意义。 In periodically nonuniform sampling, the sampling rate for a single sampling channel is usually less than the Nyquist rate and accordingly the spectrum of each sample stream is aliasing. This indicates that there will be more than one spectral replica in the reconstructed band of a sampled signal. The reconstruction strategy from periodically nonuniform samples is set up with respect to spectral replica positions and numbers within the reconstructed band. For not all the spectral replicas will cover the whole reconstructed band, it is natural and necessary to partition the reconstructed band into subbands to analyze and derive sampling and reconstruction specifications : such as filter shapes, sampling orders (channels). The paper proposes an optimal partition of subbands in reconstruction from periodically nonuniform samples by making the numbers of spectral replicas in subbands equal. The partition scheme ensures the minimum sampling orders under a given sampling rate for a single channel as well as the minimum number of subbands, which in turn suggests a simpler filter shape.
出处 《信号处理》 CSCD 北大核心 2006年第4期568-572,共5页 Journal of Signal Processing
关键词 采样重建 周期非均匀采样 子频带划分 sampling reconstruction, periodically nonuniform sampling, subband partition
  • 相关文献

参考文献5

  • 1H. Nyquist, "Certain topics in telegraph transmission theory", IEEE Trans, vol. 47, pp. 617-644.
  • 2A. Kohlenberg, "Exact interpolation of band-limited functions", J. Appl. Phys, vol. 24, no. 12, pp. 1432-1436.
  • 3Hakan Johansson and Per Lowenborg, "Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters", IEEE Trans. Signal processing, vol. 50, no. 11, 2002, pp. 2757 -2767.
  • 4Venkataramani. R. and Bresler. Y, " Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals", IEEE Trans. Signal Processing, vol. 49,2001, pp. 2301-2313
  • 5Alan J. Coulson, "A generalization of nonuniform bandpass sampling", IEEE Trans. Signal processing, vol. 43,no. 3, 1995, pp. 694-704.

同被引文献10

  • 1文静,文玉梅,李平.周期非均匀采样带通信号的采样参数[J].数据采集与处理,2006,21(1):108-112. 被引量:2
  • 2TSENG C H, CHOU S C. Direct downconversion of multiple RF signals using bandpass sampling[J]. Proc ICC, 2003, 3(5): 2003-2007.
  • 3AKOS D M, STOCKMASTER M, TSUI J B Y, et al. Direct bandpass sampling of multiple distinct RF signals[J]. IEEE Trans Commun, 1999, 47(7): 983-988.
  • 4DONOHO D. Compressed sensing[J]. IEEE Trans Inform Theory, 2006, 52(4): 1289-1306.
  • 5CANDI-S E J. Compressive sampling[C]//Th.e International Congress of Mathematicians. Madrid, Spain: [s.n.], 2006, 1-20.
  • 6COTTER S E Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Trarnscations on Signal Processing, 2005, 53(7): 2477-2489.
  • 7REBOLLO-NEIRA L, LOWE D. Optimized orthogonal matching pursuit approach[J]. IEEE Signal Processing Letters, 2002, 9(4): 137-140.
  • 8LU Y M. A theory for sampling from a union of subspace[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2334-2345.
  • 9COULSON A J. A generalization of nonuniform bandpass sampling[J]. IEEE Trans Signal Processing, 1995, 43(3): 694-704.
  • 10罗浚溢,田书林,王志刚,朱肇轩.基于正交匹配追踪的周期非均匀采样研究[J].仪器仪表学报,2010,31(12):2661-2667. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部