期刊文献+

基于混淆交叉的多分类支撑向量机树 被引量:1

Multi-classification Tree-structured Support Vector Machine Based On Confusion Cross
下载PDF
导出
摘要 本文针对复杂模式分类和多分类问题,提出了一种基于混淆交叉的多分类支撑向量机树模型,其整体结构为二叉树,在树的每个中间节点上嵌入了支撑向量机。在训练阶段,引入混淆交叉因子,在同属一个父节点的中间节点样例间进行样例的混淆交叉,将那些对分类曲面有较大影响的样例纳入树型结构更深层次的训练过程,参与更精细的分类超曲面的构建。本文将提出的支撑向量机树与现有的其他方法作了比较,实验结果说明了本文提出的模型在解决复杂模式识别问题及多分类问题上具有高效准确性及优越的泛化性能。 In this paper, the problems associated with complex pattern recognition and multi-classification are addressed and a tree-structured Support Vector Machine (TSSVM) with confusion cross is presented. A TSSVM is overall a binary tree, whose internal nodes are modular SVMs. Those two non-terminal nodes generated from the same parent node perform discounted confusion crossover controlled by a confusion cross factor. The presented approach is evaluated against other classifiers. The experimental results show that the proposed approach is competitive in dealing with complex pattern recognition problems and multi-classification problems.
出处 《信号处理》 CSCD 北大核心 2006年第4期600-604,共5页 Journal of Signal Processing
基金 东南大学优秀博士学位论文基金(YBJJ0412) 国家自然科学基金(60133010 60102011 60496310) 国家863计划项目(2003AA143040) 江苏省自然科学基金(BK2001402)
关键词 支撑向量机树 复杂模式分类 混淆交叉 分类超曲面 Tree-structured Support Vector Machine Complex Patten1 Recognition Confusion Cross Classification Hyperplane
  • 相关文献

参考文献18

  • 1V. N. Vapnik, "An Overview of Statistical Learning Theory,"IEEE Trans. on Neural Networks, vol. 10, no. 5,pp. 955-999, 1999.
  • 2C. Cortes, V. N. Vapnik, "Support Vector Learning," Machine Learning, Vol. 20, pp. 273-297, 1995.
  • 3G. D. Guo,S. Z. Li, K. L. Chan," Support Vector Machines for Face Recognition," Image and Vision Computing, vol.19, pp. 631 -638, 2001.
  • 4G. M. Foody, A. Mathur, "A Relative Evaluation of Multiclass Image Classification by Vector Machines," IEEE Trans. on Geoscience and remote Sensing, vol. 42, no.6, pp. 1335- 1343, 2004.
  • 5N. Cristianini, J. Shawe-Taylor, "An Introduction to Support Vector Machines," Cambridge University Press,2000.
  • 6John C. Platt," Fast training of support vector machines using sequential minimal optimization," Advances in kernel methods: support vector learning, MIT Press, pp. 185 -208,1999.
  • 7L. Bottou,C. Cortes, J. Denker, H. Drucker, etc,"comparison of classifier methods: A case study in handwriting digit recognition," Pro. Int. conf. Pattern Recognition,1994, pp. 77 - 87.
  • 8S. Knerr, L. Personnaz, and G. Dreyfus, " Single-layer learning revisited: A stepwise procedure for building and training a neural networks," Neuroeomputing: Algorithm,Architectures and Applications, Ed. New York: Springer-Verlag, 1990.
  • 9J. C. Platt, N. Cristianini, J. Shawe-Talor," Large Margin DAGs for Multiclass Classification," Advance in Neural Information Processing Systems, Cambridge, MA : MIT Press,2000, Vol. 12, pp. 547-553.
  • 10T. Li, Y. Y. Tang, L. Y. Fang,daptive (SPA) Neural Tree"A Structure- parameter- a-For Recognition of Large Character Set," Pattern recognition, Vol. 28, No. 3, pp315-329, 1995.

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部