期刊文献+

用SPIDER法重构飞秒脉冲位相中参数的选择 被引量:4

Optimization of parameters on reconstruction of phase of femtosecond laser pulse with SPIDER
下载PDF
导出
摘要 为了更精确地测量飞秒脉冲特性以满足其不断拓宽的应用,基于光谱相位相干直接电场重构法(SP IDER)测量飞秒激光脉冲的基本原理和重构相位的反演算法,数值模拟了SP IDER重构飞秒脉冲相位的过程,分析了时间延迟τ、光谱剪切量Ω及滤波窗口宽度的选取原则。以宽度约为20 fs的高斯型线性啁啾脉冲为例,通过选取不同的时间延迟τ和光谱剪切量Ω重构脉冲的相位,发现重构位相曲线与原输入脉冲位相曲线最接近时,时间延迟τ约为1 210 fs,相对光谱剪切量Ω/Δω约为9%,滤波窗口宽度约为τ/3。 To meet the ever increasing applications of femtosecond laser pulse, it has to be measured more precisely. Based on the spectral phase interferometry of direct electric-field reconstruction (SPIDER), the spectral phase of femotosecond laser pulse was reconstructed with numerical simulations. The crucial parameters that include the time delay r between the tested pulse replicas, the frequency shear Ω and the width of filter window were analyzed to choose their values properly. With the Gauss linearly chirped pulse whose full width at half maximum (FWHM) is about 20 fs, the phase is reconstructed with different time delay and different frequency shear Ω/△ω. The optimum phase curve is about at τ=1210 fs and relative shear is Ω/△ω=0.09. The width of filtering window is about τ/3.
出处 《应用光学》 CAS CSCD 2006年第4期340-343,共4页 Journal of Applied Optics
基金 浙江省自然科学基金资助项目(M603256)
关键词 光谱相位相干直接电场重构法 参数选取原则 飞秒脉冲 SPIDER parameter selection principle femtosecond laser pulse
  • 相关文献

参考文献7

二级参考文献32

  • 1[1]Wang Yishan,et al. Generation of 15 femto-second Ti∶sapphire pulse[J].Acta Optica sinica,1987,15:483~485.[1〗[2]A Finch,et al. Opt Commum,1998,35∶345~354.[3]G Chen,et al. Generation and measurement of 19 femto-second-light pulses[J].SPIE,1988,1032:432~436.[4]R L Fork,et al. Compression of optical pulses to six femtosecond by using cubic phase compensation[J].Opt Lett,1987,12∶483~485.[5]Chen Guofu.The new development of femtosecond laser pulses technology[J].Annual Reports of SKLTOT,1995,2∶108~112.[6]徐大伦.变像管高速摄影及其应用[M].北京:科学出版社,1991.[7]M Kaiser, et al. Two-photo excitation in CaF2∶Eu2+[J]. Phys Reve Lett 1961,7∶229~231.[8]P Sperber and A penzkofer.Pulse shape determination of intensity compressed picosecond pulses by two phtotns fluorescence analysis[J].Opt Quantum Electron,1986,18∶145~151.[9]姚建铨.非线性光学频率变换及激光调谐技术[M].北京:科学出版社,1995.[10]Kenneth L Sala, et al. CW Autocor-
  • 2D T Reid,G T Kennedy,et al.Widely tunable,near-to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4[J].IEEE Journal of Selected Topics in Quantum Electronics,1998,4(2):238-250.
  • 3Dirk H Sutter,Isabella D Jung,et al.Self-starting 6.5fs pulses from a Ti:Sapphire laser using a semiconductor saturable absorber and double chirped mirrors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998,4(2):169-179.
  • 4D Richardson,et al.Fiber laser systems shine bri-ghtly[J]. Laser Focus World,1997,(9):87-96.
  • 5A Galvanauskas,D Harter,et al. High-energy fem-tosecond pulse compression in chirped fiber gratings[R].Anaheim: CLEO'96,1996:499-500.
  • 6F O Hday,F W Wise.High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror[R]. Long Beach:CLEO'02,2002:518-519.
  • 7B Galvanauskas, M E Fermann,et al.High-energy high-average-power femtosecond fiber system using a QPM-grating pulse compressor[R].San Francisco:CLEO'98,1998:364.
  • 8Antoine Courjaud,et al. High-power diode-pumped Yb:KGW ultrafast laser[R]. Long Beach:CLEO'02,2002:501-502.
  • 9Fermann M E,Stock M L,et al. Wavelength tu-nable soliton generation in the 1400-1600 nm region using an Yb fiber laser[J]. Optical Fiber Communication Conference and Exhibit ,2001,(2):1-3.
  • 10Carruthers T F,horowitz M,et al. A dispersion-managed,harmonically mode-locked fiber soliton laser[R].Baltimore:IEEE LEOS'99,1999,(2):774-775.

共引文献34

同被引文献24

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部