期刊文献+

基于边界元的分布参数最优控制共轭梯度算法

Conjugate gradient algorithm based on boundary element method to distributed elliptic optimal control problem
下载PDF
导出
摘要 得到椭圆型分布参数最优控制问题对应的最优性方程组,在凸性条件下,证明了最优控制的唯一存在性问题.利用一阶最优性条件构造了基于边界元法的共轭梯度算法,给出算法的局部误差估计.最后,以算例验证算法的有效性. A system of optimality equations of distributed elliptic optimal control problem is derived and, in the convex condition, the existence of a unique solution to optimal control problem is proved. The conjugate gradient algorithm based on boundary element method is developed by means of the associated first-order necessary optimality condition and the local error estimates for this scheme is obtained. Finally, a numerical example is given to illustrate the efficiency of the proposed methodology.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期140-144,共5页 Journal of Lanzhou University(Natural Sciences)
基金 陕西省自然科学基金资助项目(2004 A05).
关键词 最优控制 基本解 边界元方法 共轭梯度算法 optimal control fundamental solution boundary element method conjugate gradient algorithm
  • 相关文献

参考文献7

  • 1LI Rou,LIU Wen-bin,MA He-ping,et al.Adaptive finite element approximation for distributed elliptic optimal control problems[J].SIAM Journal of Control and Optimization,2003,41(5):1321-1349.
  • 2ROLAND Becker,HARTMUT Kapp,ROLF Rannacher.Adaptive finite element method for optimal control of partial differential equation:basic concept[J].SIAM Journal of Control and Optimization,2000,39(1):113-132.
  • 3ALFIO Borzi,KARL Kunisch,Do Y K.Accuracy and convergence properties of the finite difference multi-grid solution of an optimal control optimality system[J].SIAM Journal of Control and Optimization,2003,41(5):1477-1497.
  • 4LIU W B,NEITTAANMAKI P,TIBA D.Existence for sharp optimization problems in arbitrary dimension[J].SIAM Journal of Control and Optimization,2003,41(5):1440-1454.
  • 5RAMOS A M,GLOWINSKI R,PERIAUX J.Nash equilibria for the multiobjective control of linear partial differential equations[J].Journal of Optimization Theory and Applications,2002,112(3):457-498.
  • 6MARIN L,ELLIOTT L,HEGGS P J,et al.Conjugate gradient boundary element solution to the cauchy problem for Helmholtz-type equations[J].Computational Mechanics,2003,31(3):367-377.
  • 7李炳杰.一类反应扩散方程的边界元分析[J].兰州大学学报(自然科学版),2000,36(4):16-19. 被引量:3

二级参考文献2

  • 1复旦大学数学系.数学物理方程[M].上海:上海科学技术出版社,1981.219-270.
  • 2复旦大学数学系,数学物理方程,1981年,219页

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部