期刊文献+

应用神经网络和AE信号对磨削烧伤的在线检测

Grinding Burn Online Detected by Neural Network and Acoustic Emission
下载PDF
导出
摘要 磨削烧伤是磨削过程中常见缺陷之一,严重影响被加工零件质量和使用寿命,运用RBF神经网络和AE传感器实现了磨削过程中磨削烧伤的在线检测,通过分析磨削加工中AE信号的特性,计算240~400kHz内的信号有效值,峭度和歪度,处理后作为神经网络的输入向量,完成磨削烧伤的在线识别,通过比较在线识别结果和离线检测结果,证明了该在线检测系统具有较高的准确性. Grinding burn forms frequently in grinding process, it decreases quality and the useful life of workpieces. A method is proposed to detect the workpiece burn online in grinding process by RBF neural network. The grinding acoustic emission (AE) signals were collected and digested to extract feature vectors that appear to he suitable for neural network processing. The feature vectors, which consists of band power, kurtosis and skew were the statistics extracted from the 240 kHz to 400 kHz AE Signals. Compared the results of offline testing with the results of online detecting, this online detecting system was proved efficient and accurate.
出处 《计算机测量与控制》 CSCD 2006年第8期990-991,1015,共3页 Computer Measurement &Control
关键词 神经网络 发射声 磨削 烧伤检测 neural network acoustic emission grinding burn detecting
  • 相关文献

参考文献3

  • 1陈明,浦学锋,张幼桢.声发射信号的时序分析法在磨削烧伤预报中的应用研究[J].南京航空航天大学学报,1996,28(1):120-125. 被引量:1
  • 2Kwak J S,Ha M K.Neural network approach for diagnosis of grinding operation by acoustic emission and power signals[J].Journal of Materials Processing Technology,2004,147:65-71.
  • 3Wang Z,Willett P,DeAguiar P R,et al..Neural network detection of grinding burn from acoustic emission[J].International Journal of Machine Tools and Manufacture,2001,28 (2):283-309.

二级参考文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部