期刊文献+

小波萎缩法去噪

Denoising Using Wavelet Shrinkage
下载PDF
导出
摘要 通过利用软、硬阈值函数和比例萎缩LAWML法对高斯白噪声去噪比较研究,数值算例表明软阈值函数去噪效果最好,而且其效果与小波变换分解层有关。 This paper compares three methods such as soft-threshold function and hard-threshold function and LAWML for signals corrupted by white noise. Numerical experiments show that soft-threshold function is the most efficient. And their effect is related to the decompose level of wavelet transform.
出处 《洛阳工业高等专科学校学报》 2006年第3期32-34,共3页 Journal of Luoyang Technology College
关键词 小波变换 阈值去噪 阈值函数 小波萎缩 Wavelet transform Threshold denoising Threshold function Wavelet shrinkage
  • 相关文献

参考文献2

二级参考文献10

  • 1[1]Ching P C,So H C,Wu S Q.On wavelet denoising and its applications to time delay estimation [J].IEEE Trans Signal Processing,1999,47(10): 2879-2882.
  • 2[2]Gunawan D.Denoising images using wavelet transform [A].Proceedings of the 1999 IEEE Pacific Rim Conference on Communications,Computers and Signal Processing [C].Victoria BC,1999.83-85.
  • 3[3]Vidakovic B,Lozoya C B.On time-dependent wavelet denoising [J].IEEE Trans Signal Processing,1998,46(9): 2549-2551.
  • 4[4]Bruce A G,Gao HongYe.Understanding waveshrink: variance and bias estimation [EB/OL].http: //www.mathsoft.com.
  • 5[5]Mihcak M K,Kozintsev I,Ramchandran K,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients [J].IEEE Signal Processing Letters,1999,6(12): 300-303.
  • 6[6]Malfait M,Roose D.Wavelet-based image denoising using a Markov random field a priori model [J].IEEE Trans Imgae Processing,1997,6(4): 549-565.
  • 7[7]Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage [J].Biometrika,1994,81: 425-455.
  • 8[8]Donoho D L,Johnstone I M.Adapting to Unknown smoothness via wavelet shrinkage [J].J Am Stat Ass,1995,90: 1200-1224.
  • 9[9]Chang S G,Yu Bin,Vetterli M.Adaptive wavelet thresholding for image denoising and comopression [J].IEEE Trans Image Processing,2000,9(9): 1532-1546.
  • 10[10]Moulin P,Liu Juan.Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors [J].IEEE Trans Information Theory,1999,45: 909-919.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部