期刊文献+

基于神经网络的雷达抗欺骗干扰方法 被引量:3

Method against Radar’s Deceptive Jaming Based on Neural Network
原文传递
导出
摘要 对雷达抗应答式欺骗干扰的特征提取方法进行了改进,统计方法将均值与方差特征相结合定义特征因子,神经网络方法用Kohonen网络进行特征提取。仿真结果表明,2种方法都具有较好的抗应答式欺骗干扰性能,而神经网络方法性能更为优越。 Based on the method of radar against answering deception-jamming, this paper advances two new methods of feature extraction. The statistical method defines a feature factor united the mean and variance feature, the NN method extracts the feature with Kohonen network. Results of simulation show that these two methods perform well against deceptive jamming, and the NN method is better in training and detecting outcome.
出处 《装甲兵工程学院学报》 2006年第4期74-77,共4页 Journal of Academy of Armored Force Engineering
关键词 应答式欺骗干扰 特征提取 神经网络 anti-deception-jamming feature extraction neural network
  • 相关文献

参考文献5

二级参考文献10

  • 1阮祥新,汪连栋,马孝尊.干扰条件下雷达系统功能仿真研究[J].舰船电子对抗,2000,23(6):16-19. 被引量:8
  • 2Claasen T A C M, Mechlenbraucker W F G.The Wigner distribution - a tool for time-frequency analysis[J]. Philips J. Research, 1980,35(6):217-250,276-300,372-389.
  • 3Kumar V J ,Carrol C.Performance of Wigner distribution function based detection methods[J]. Optical Engineering, 1984, 23(6): 732-737.
  • 4Martin W,Flandrin P.Wigner-Ville spectral analysis of nonstationary processes[J]. IEEE Trans.ASSP,1985,33(6):1461-1470.
  • 5Kenny O P,Boashash B.Time-frequency analysis of backscattered signals from diffuse radar targets[J].IEE Proceeding-F,1993,140(3):198-208.
  • 6Kumar P K ,Prabhu K M M.Classification of radar returns using Wigner-Ville distribution[C].IEEE ICASSP-96,1996: 3105-3108.
  • 7Kumar P K ,Prabhu K M M.Simulation studies of moving-target detection: a new approach with Wigner-Ville distribution[J].IEE Proc. Radar,Sonar Navig.,1997,144(5):259-265.
  • 8边肇祺,张学工,等.模式识别.北京:清华大学出版社,1999.
  • 9马骏声.电子战综述[J].航天电子对抗,2000,29(3):45-49. 被引量:9
  • 10张涛,吴京,周一宇,徐晖.雷达干扰效果评估研究[J].航天电子对抗,2002,31(5):18-22. 被引量:10

共引文献15

同被引文献41

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部