摘要
对于内容丰富的W AP服务,用户需要花费大量的时间来查找自己所需要的服务功能.为此使用功能推荐模型,根据用户的偏好向用户推荐其需要的功能内容.该模型首先使用OW L来表示W AP服务功能本体,然后根据用户的服务功能浏览日志使用Ex tended Support P ropagation on B ayes ian N etw orks(ESPBN)模型来分析用户的偏好,据此向用户提供动态生成的服务功能列表.试验表明,此模型与传统模型相比更能够减少用户查找功能项的次数.
Owing to the abundance of WAP services, amounts of time were wasted on searching for the services needed. So, a recommendation model, which can recommend WAP services based on user preferences, is proposed. In the model, OWL is utilized to denote the ontology of WAP services, and then the Extended Support Propagation on Bayesian Networks(ESPBN) is used for extracting user preferences from user logs. At last a list of WAP services is composed dynamically for user preferences. Experimental results prove that compared with other traditional models this one has obviously advantage in search times.
出处
《小型微型计算机系统》
CSCD
北大核心
2006年第9期1614-1617,共4页
Journal of Chinese Computer Systems
基金
国家自然科学基金(60072006)资助.