摘要
设Nn+p是截面曲率KN满足1/2<δ<KN<1的n+p维局部对称完备的δ-Pinching黎曼流形。Mn是Nn+p的紧致伪脐子流形。本文讨论了这类子流形关于第二基本形式模长的平方、截面曲率及Ricci曲率有关的Pinching定理。
Letbe a n +p-dimensional locally symmetric complete Riemannian manifold with sectional curvaturesatisfiesand be an n-dimensinal compact Pseudo-Umbilical submanifold in .In this paper, we discussed the Pinching theorem about this manifolds with, Rijij curvature and Ricci curvature.
出处
《咸阳师范学院学报》
2006年第4期7-10,共4页
Journal of Xianyang Normal University
关键词
局部对称
伪脐子流形
全脐子流形
locally symmetry
pseudo-umbilical submanifold
totally-umbilical submanifold