期刊文献+

螺旋MRI的网格化数据重建算法比较 被引量:3

Comparison of Gridding Algorithms Used in Spiral Magnetic Resonance Imaging
下载PDF
导出
摘要 螺旋MRI的原始数据是在不均匀的k-空间螺旋轨迹上采样得到的,需要通过网格化算法等手段将数据变成等间距的网格数据后,才能采用FFT进行重建,最后得到供临床使用的图像.本文对Jackson网格化算法和Claudia大矩阵算法的重建速度和图像结果进行了比较,并得出以下结论1)在获得相近图像质量的情况下,Claudia大矩阵重采样算法比Jack-son算法要快且更方便在仪器上实现.2)在Jackson双倍细网格算法的实现方式中,数据驱动插值比网格驱动插值更有效率.3)在Claudia大矩阵重采样算法中,对冗余比大于310∶1的数据进行图像重建的时候,网格点的幅值不平均化比平均化后的效果还要好.这几个结论都将有利于MRI图像重建技术的进一步提高. Spiral magnetic resonance imaging (MRI) data are sampled in the k-space with non-uniform spiral trajectory so that gridding must first be performed to transform the raw data into uniform space before fast Fourier transform (FFT reconstruction) can be used to reconstruct images. In this paper, we compared two classes of gridding algorithms, the large matrix resampling algorithm proposed by Claudia et al and the doublesized gridding algorithm proposed by Jackson et al, with respect to the speed of computation and the quality of resultant images. First, it was shown that, while capable of getting images with similar quality relative to those obtained by the latter, the former algorithm is faster and easier to implement. Secondly, our results showed that datadriven interpolation is more efficient than grid-driven interpolation when the doublesized gridding algorithm is used. Lastly, in the large matrix resampling algorithm, when the efficient-versus-redundancy data ratio surpasses 310 : 1, it is more efficient not to average the values of gridding points of the large matrix. The conclusions are helpful to improve the gridding and reconstruction techniques used in spiral MRI.
出处 《波谱学杂志》 CAS CSCD 北大核心 2006年第3期303-311,共9页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(30070226).
关键词 MRI 网格化重建 数据驱动插值 网格驱动插值 大矩阵重采样 MRI gridding, reconstruction, data-driven interpolation, grid-driven interpolation, large matrix resampling
  • 相关文献

参考文献9

  • 1Thrall J.How molecular medicine will impact radiology[J].Diagnostic Imaging,1997,19(12):23-27.
  • 2Meyer C,Hu BS,Nishimura DG,et al.Fast Spiral coronary artery imaging[J].Magn Reson Med,1992,28(2):202-213.
  • 3Sullivan O.A fast sinc function gridding algorithm for Fourier inversion in computer tomography[J].IEEE T Med Imaging,1985,4(2):200-207.
  • 4Jackson J I,Meyer C H,Nishimura D G.Selection of a convolution function for Fourier inversion using gridding[J].IEEE T Med Imaging,1991,10(3):473-478.
  • 5Claudia O,Michael M.Spiral reconstruction by Regridding to a Large Rectilinear Matrix:A Practical Solution for Routine Systems[J].Journal of Magnetic Resonance Imaging,1999,10(1):84-92.
  • 6Schomberg H.Notes on direct and gridding-based Fourier inversion methods[C].Washington D C:IEEE International Symposium on Biomedical Imaging,2002.645-648.
  • 7Kai T,Jens F.Spiral Imaging:A Critical Appraisal[J].Journal of Magnetic Resonance Imaging,2005,21:657-668.
  • 8卢广,刘买利,叶朝辉.Spiral MRI和图像处理[J].波谱学杂志,2004,21(2):175-183. 被引量:2
  • 9Maeda A,Sano K,Yokoyama T.Reconstruction by weighted correlation for MRI with time-varying gradients[J].IEEE T Med Imaging,1988,7(1):26-31.

二级参考文献28

  • 1O'Sullivan J D. A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography [J]. IEEE T Med Imaging, 1985, MI-4(4): 200-207.
  • 2Jackson J I, Meyer C H, Nishimura D G, et al. Selection of a Convolution Function for Fourier Inversion Using Gridding [J]. IEEE T Med Imaging, 1991, 10(3): 473-478.
  • 3Hoge R, Kwan R, Pike G B. In: Boook of abstracts: Forth Annual Meeting o the society of Magnetic Resonance[C]. Berkeley: CA SMR, 1996, 385.
  • 4O'Donnel M, Edelstein W A. NMR Imaging in the Presence of Magnetic Field Inhomogeneities and Gradient Nonlinearities [J]. Med Phys, 1985, 12: 20-26.
  • 5Norton S J. Fast Magnetic Resonance Imaging with Simultaneously Oscillating and Rotating Field Gradients [J]. IEEE T Med Imagimg, 1987, MI-6(1): 21-31.
  • 6Maeda A, Sano, Yokoyama. Reconstruction by Weighted Correction for MRI with Time-Varying Gradients [J]. IEEE T Med Imaging, 1988, MI-7(1): 26-31.
  • 7Meyer C H, Pauly J M, Macovski A, et al. Simultaneous Spatial and Spectral Selective Excitation [J]. Magnet Reson Med, 1990, 15: 287-304.
  • 8Noll D C, Meyer C H, Pauly J M, et al. A Homogeneity Correction Method for Magnetic Resonance Imaging with Time-Varying Gradients [J]. IEEE T Med Imaging, 1991, 10(4): 629-637.
  • 9Noll D C, Pauly J M, Meyer C H, et al. Deblurring for Non-2D Fourier Transform Magnetic Resonance Imaging [J]. Magnet Reson Med, 1992, 25: 319-333.
  • 10Man L C, Pauly J M, Macovski A. Multifrequency Interpolation for Fast Off-resonance Correction [J]. Magn Reson Med, 1997, 37: 785-792

共引文献1

同被引文献36

  • 1侯正松,江贵平,王华峰,陈武凡.MR图像刚性平移运动伪影的自动逆向迭代修正[J].中国生物医学工程学报,2004,23(4):353-358. 被引量:9
  • 2Zoroofi R A, Sato Y, Tamura S, et al. MRI artifact cancellation due to rigid motion in the imaging plane [J]. IEEE Transactions on Medical Imaging, 1996, 15(6): 768- 784.
  • 3Atkinson D, Hill D L G, Stoyle P N R, et al. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion [J]. IEEE Transactions on Medical Imaging, 1997, 16(6)= 903-910.
  • 4Weerasinghe C, Yan H. An improved algorithm for rotational motion artifact suppression in MRI[J]. IEEE Transactions on Medical Imaging, 1998, 17(2): 310-317.
  • 5Weerasinghe C, Ji I., Yan H. ROI extraction from motion affected MRI images based on fuzzy and active contour models [C] //Proceedings of International Conference on Aeousties, Speech, and Signal Processing, Phoenix, 1999: 3405-3408.
  • 6Weerasinghe C, Ji L, Yan H. A new method for ROI extraction from motion affected MR images based on suppression of artifacts in the image background [J]. Signal Processing, 2000, 80(5): 867-881.
  • 7Liew A W C, Yan H, l.aw N F. POCS based blocking artifacts suppression using a smoothness constraint set with explicit region modeling [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(6) : 795-800.
  • 8Lin W, Wehrli F W, Song H K. Correcting bulk in plane motion artifacts in MRI using the point spread function[J]. IEEE Transactions on Medical Imaging, 2005, 24(9) : 1170- 1176.
  • 9Mamata Y, Mamata H, Nabavi A, et al. Intraoperative diffusion imaging on a 0.5 Tesla interventional canner[J]. J Magn Reson Imaging, 2001, 13(1): 115-119.
  • 10Naoto H. Yasushi W, Tomohiko M, et al. Utilization of low-field MR scanners[J]. Magn Reson Med Sci, 2004, 3(1), 27 -38.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部