摘要
研究一类非线性高阶发展方程整体强解的长时间渐近行为.结合能量估计得到了方程解半群在11H0(Ω)×H0(Ω)及在D(A)×D(A)中的有界吸收集,并利用ω-极限紧方法得到了整体强解的全局吸引子A的存在性.A在D(A)×D(A)不变、紧,并且按D(A)×D(A)的范数吸引D(A)×D(A)中的任意有界集.
Long-time asymptotic behaviors of nonlinear high level evolution equations were studied. Combined with energy method, the bounded absorbing sets in H0^1:(Ω)×H0^1(Ω)andD(A)×D(A) were obtained respectively. By a method of ω-limit compact, the existence of global attractors A of strong solution were gained, and A attracts any bounded subsets in D(A)×D(A) with the norm of D(A)×D(A) .
出处
《湖南农业大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期423-425,共3页
Journal of Hunan Agricultural University(Natural Sciences)
基金
国家自然科学基金项目(10571178)
关键词
非线性发展方程
整体强解
ω-极限紧
全局吸引子
nonlinear evolution equations
global strong solution
ω-limit compact
global attractors