期刊文献+

适合可变剪接研究的转录组序列分析策略 被引量:1

The Strategy of Transcriptome Analysis for Alternative Splicing Research
下载PDF
导出
摘要 规模化基因表达实验所产生的大量与生物组织特定时空状态相关的cDNA和表达序列标签(EST)等信息可用于新基因的发现、基因表达模式分析和基因组的注释,从而可为转录组研究提供实验设计和结果分析的参考标准。真核基因可变剪接的普遍性及其在机体生理与病理过程中的重要作用,使得可变剪接的系统分析已成为功能基因组研究中的热点之一。在面临海量表达数据的指数增长和不断有新的基因组获得测序的情况下,实现转录组序列分析的规模化、自动化计算迫在眉睫。讨论不同转录组分析系统中的数据分析算法及其计算需求,并提出适用于大规模可变剪接分析的策略。 Experiments on transcriptome analysis have resulted huge genes expression data related with specific temporal and spatial information. These data can be used in new genes identification, analysis of genes express patterns and the annotation of genomes, which may provide the reference standard for experiment design and result analysis of transcriptome experiments. Since the altemative splicing of eukaryotic genes have found to be universal and play an important role in physiology and pathology, systematic analysis of alternative sphcing is becoming a new hotspot of functional genome research. Facing the immense and exponential increase of experimental express data and more new genomes getting sequenced, there is exigent of the strategy which can handle transcriptome sequences in large scale and automatic way. We elucidate the algorithms, the computing requirements and programs in different transeriptome sequences analysis systems and propose a strategy more suitable for large scale analysis of alternative splicing.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2006年第4期37-42,共6页 Journal of National University of Defense Technology
基金 国家并行与分布处理国防重点实验室基金资助项目(51484050304JB4401) 军事医学科学院科技创新启动基金资助项目(04010010402013)
关键词 转录组 EST聚类 EST装配 可变剪接 高性能计算 transcfiptome EST clustering EST assembly alternative splicing high performance computing
  • 相关文献

参考文献31

  • 1Modrek B,Lee C.A Genomic Vew of Alternative Splicing[J].Nat Genet.2002,30(1):13-19.
  • 2丁克越,沈岩.ESTs数据分析及ESTs数据系统[J].国外医学(分子生物学分册),2002,24(2):113-116. 被引量:5
  • 3Bouck J,Yu W,Gibbs R,et al.Comparison of Gene Indexing Databases[J].Trends Genet.1999,15(4):159-162.
  • 4Zhang Z,Schwartz S,Wagner L,et al.A Greedy Algorithm for Aligning DNA Sequences[J].J Comput Biol.2000,7(1-2):203-214.
  • 5Darling A E,Carey L,Feng W C.The Design,Implementation,and Evaluation of mpiBLAST[R].In:ClusterWorld Conference & Expo and the 4th International Conference on Linux Clusters:The HPC Revolution,2003,LA-UR 03:2862.
  • 6Burke J,Davison D,Hide W.d2_cluster:a Validated Method for Clustering EST and Full-length cDNA Sequences[J].Genome Res.1999,9(11):1135-1142.
  • 7Carpenter J E,Christoffels A,Weinbach Y,et al.Assessment of the Parallelization Approach of d2_cluster for High-Performance Sequence Clustering[J].J Comput Chem,2002,23(7):1~3.
  • 8Trivedi N,Bischof J,Davis S,et al.Parallel Creation of Non-redundant Gene Indices from Partial mRNA Transcripts[J].Future Generation Computer Systems.2002,18(6):863-870.
  • 9Ptitsyn A,Hide W.CLU:a New Algorithm for EST Clustering[J].BMC Bioinformatics 2005,6(Suppl 2):S3.
  • 10Mudhireddy R,Ercal F,Frank R.Parallel Hash-based EST Clustering Algorithm for Gene Sequencing[J].DNA Cell Biol 2004,23(10):615-623.

二级参考文献54

共引文献11

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部