期刊文献+

快速凝固Cu-Sn合金的组织形态及相结构 被引量:13

Microstructural morphology and phase structure of rapidly solidified Cu-Sn alloy
下载PDF
导出
摘要 研究快速凝固Cu-20%Sn亚包晶合金的相结构、晶体生长行为和组织特征,分析冷却速率与组织形成之间的相关规律。结果表明:在急冷快速凝固条件下,合金的包晶转变和共析转变均受到抑制,形成了以亚稳的Cu5.6Sn金属间化合物为主相的快速凝固组织;随着冷却速率的增大,α-Cu相含量减少,Cu5.6Sn相数量显著增多;晶体生长的方向性增强;Cu5.6Sn生长方式由小平面向非小平面生长转变,组织形态由粗大板条状向细密柱状转变。TEM分析表明:在Cu5.6Sn晶内存在大量的位错塞积及孪晶;孪晶之间相互平行,间距约25~80nm;随冷却速率的增大,位错密度增大,孪晶数量增多。 The phase structure, crystal growth behavior and microstructural characteristics of rapidly solidified Cu-20%Sn alloy were investigated and the relationships between the microstructure formation and the cooling rate were analyzed theoretically. The results show that under rapid solidification condition, the peritectic transition and eutectoid transitions of the alloy are all suppressed, which results in the formation of microstructures characterized mainly by metastable Cu5.6Sn metallic compound. With increasing cooling rate, the amount of α-Cu phase decreases, while that of Cu5.6Sn phase increases. Meanwhile, the growth form transforms from faced to non-faced growth and the microstructure exhibits apparent growth orientation. TEM reveals that there exists large quantity of dislocation pile-up and twins in Cu5.6Sn grains. Those twins are parallel to each other with the interspacing about 25~80 nm, and extend to the boundary of Cu5.6Sn branches. The increase of cooling rate results in the increase of dislocation density and twin quantity.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第8期1374-1379,共6页 The Chinese Journal of Nonferrous Metals
基金 陕西省教育厅科学研究项目(06JK220)
关键词 Cu-Sn合金 快速凝固 晶体生长 相结构 位错 Cu-Sn alloy rapid solidification crystal growth phase structure dislocation
  • 相关文献

参考文献15

  • 1Huang J S,Zhang J,Cuevas A,et al.Recrystallization and grain growth in bulk Cu and Cu(Sn) alloy[J].Mater Chem Phys,1997,49:33-41.
  • 2Lee K L,Hu C K.In situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects[J].J Appl Phys,1995,7(78):4428-4437.
  • 3Liu C Y,Chen C,Tu K N.Electromigration in Sn-Pb solder strips as a function of alloy composition[J].J Appl Phys,2000,10(88):5703-5709.
  • 4Tu K N,Lee T Y,Jang J W.Wetting reaction versus solid state aging of eutectic SnPb on Cu[J].J Appl Phys,2001,9(89):4843-4849.
  • 5Hu C K,Luther B,Kaufman F B,et al.Copper interconnection integration and reliability[J].Thin Solid Films,1995,262(1-2):84-92.
  • 6Kim H K,Tu K N.Rate of consumption of Cu in soldering accompanied by ripening[J].Appl Phys Lett,1995,14(67):2002-2004.
  • 7Kim H K,Liou H K,Tu K N.Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu[J].Appl Phys Lett,1995,18(66):2337-2339.
  • 8Clevenger L A,Arcot B,Ziegler W,et al.Interdiffusion and phase formation in Cu (Sn) alloy films[J].J Appl Phys,1998,1(83):90-99.
  • 9Al-Ganainy G S,Fawzy A,Ei-Salam F A.Transient and steady-state creep characteristics of Cu-2%Sn alloy in the solid solution region[J].Physica B,2004,344:443-450.
  • 10Liu X Y,Kane W,McMahon C J Jr.On the suppression of dynamic embrittlement in Cu-8%Sn by an addition of zirconium[J].Scripta Materialia,2004,50:673-677.

二级参考文献33

  • 1Wenjing Yao,Xiujun Han,Bingbo Wei.Rapid eutectic growth during free fall[J].Chinese Science Bulletin,2002,47(15):1316-1320. 被引量:7
  • 2[1]Kubota K, Mabbuch M, Higashi K. Review-processing and mechanical properties of fine-grained magnesiumalloys[J]. J Mater Sci, 1999, 34(10): 2255-2262.
  • 3[2]Mordike B L, Ebert T. Magnesium properties-applica tion-potential[J]. Mater Sci and Eng A, 2001, 302(1): 37-45.
  • 4[3]Jones H. A perspective on the development of rapid solidification and nonequilibrium processing and its future[J]. Mater Sci and Eng A, 2001, 304- 306:11 - 19.
  • 5[4]Wang R M, Eliezer A, Gutman E. Microstructures and dislocations in the stressed AZ91D magnesium al loys[J]. Mater Sci andEngA, 2002, 344(1 -2): 279 - 287.
  • 6[5]Somekawa H, Watanable H, Mukai T, et al. Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy[J]. Scripta Materialia, 2003, 48(9): 1249 - 1254.
  • 7[6]Tamura Y, Motegi T, Kono N, et al. Effects of minor elements on grain size of Mg-9% Al alloy[J]. Mater Sci Forum, 2000, 350- 351: 199- 204.
  • 8[7]LIU Yi-zhen, WANG Qu-dong, ZENG Xiao-qin, et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys[J]. Mater Sci and Eng A, 2000, 278(1 -2): 66-76.
  • 9[8]Vaidya A R, Lewandowski J J. Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy compositites[J]. Mater SciandEngA, 1996, 220(1-2): 85-92.
  • 10[9]Munitz A, Cotler C, Stern A, et al. Mechanical prop erties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J]. Mater Sci and Eng A, 2001, 302(1): 68-73.

共引文献73

同被引文献110

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部