期刊文献+

利用串/并联神经网络建立化学反应器模型 被引量:1

Modeling of a chemical reactor with serial/parallel neural networks
下载PDF
导出
摘要 研究了使用线性动态神经网络与非线性的静态网络相结合的混合建模方式解决复杂非线性系统的建模问题。使用混合神经网络建模,可以降低单个网络的训练难度,基于此,也可将非线性系统控制策略的求解分解,转换为线性系统的求解。从而改善使用单一神经网络建模存在的精度不高以及训练时间长等不足,也为非线性系统控制策略的求解提供方便。本文以一个典型多变量系统———连续搅拌釜式反应器(CSTR)作为仿真对象,详细研究和实现了两类神经网络串联和并联的混合建模方法,并对结果进行了比较。 Modeling studies of complex nonlinear systems by hybrid neural networks are described in this paper. The hybrid neural networks consist of linear dynamic neural networks and nonlinear static neural networks. Using such a hybrid neural network, the difficulties in training a single network can be decreased, and the solution for a nonlinear control strategy can be reduced to solving for a linear system. Thus, this method overcomes the shortcomings of long training time and lower accuracy observed for one single neural network. Both the serial and parallel neural networks have been used to model a CSTR. A comparison between the two hybrid neural networks on the basis of the results obtained is described.
出处 《北京化工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期48-51,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 北京市教育委员会重点学科建设共建项目(XK100100435)
关键词 B样条网络 线性递归神经网络 混合神经网络 连续搅拌釜式反应器(CSTR) BSNN linear recurrent neural network hybrid neural network CSTR
  • 相关文献

参考文献5

二级参考文献9

共引文献24

同被引文献10

  • 1张海涛,李大字,靳其兵,耿延睿.基于无先导卡尔曼滤波的RBFN训练算法研究[J].北京化工大学学报(自然科学版),2007,34(2):221-224. 被引量:6
  • 2邢杰,萧德云.基于集成神经网络的CSTR状态预测[J].计算机与应用化学,2007,24(4):433-436. 被引量:2
  • 3Julier SJ, Uhlmann JK and Durrant-Whyte HF. A new approach for filtering nonlinear system. Proceedings of the American Control Conference, 1995:1628 - 1632.
  • 4Lv Shaolin, Cai Lin, Lu Ding and Chen Jiabin. Two efficient implementation forms of unscented kalman filter. IEEE International Conference on Control and Automation, 2007.
  • 5Hirasawa K, Wang XF, Murata J, Hu J and Jin C. Universal learning network and its application to chaos control. Neural Networks, 2000, 13:239-253.
  • 6Han M, Hart B and Guo W. Process control of pH neutralization based on adaptive algorithm of universal learning network. Journal of Process Control, 2006, 16:1 -7.
  • 7Hart M, Hart B, Xi J and Hirasawa K. Universal learning network and its application for nonlinear system with long time delay. Computers and Chemical Engineering, 2006, 31 : 13 - 20.
  • 8Wan EA and van R der Meme. The unscented bayes filter. Technical report, CSLU, Oregon Graduate Institute of Science and Technology, 2000.
  • 9Xiong K, Zhang HY and Chan CW. Performance evaluation of UKFbased nonlinear filtering. Automatica, 2006, 42:261 - 270.
  • 10WU Jian-feng,吴建锋,何小荣,陈丙珍.基于反馈神经网络的动态化工过程建模[J].计算机与应用化学,2001,18(2):105-110. 被引量:15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部