期刊文献+

纳米金增效微重量法核酸检测的研究 被引量:8

Development of Microgravimetric Detection for Nucleic Acid with Nanogold-Enhancement
下载PDF
导出
摘要 用纳米金增效以提高微重量法检测核酸的灵敏度。实验研究了纳米金粒径大小对核酸探针固定的表面密度的影响以及探针密度对靶核酸杂交效率的影响。研究表明,核酸检测灵敏度与纳米金的粒径大小有密切关系。与粒径为5、15nm的纳米金相比,用粒径25nm的纳米金可以获得较高的杂交效率,检测的灵敏度也较高。本实验方法检测核酸的线性范围为0.05—1.2×10^-6mol/L;检出限为1.0×10^-8moL/L。 Gold nanoparticles with different sizes were utilized to enhance the immobilization of nucleic acid on the surface of quartz crystal microbalance (QCM) and reduce the steric hindrance of hybridization with target nucleic acid,which improved the sensitivity of the microgravimetric detection greatly. This enhancement effect was dependent on the size of the gold nanoparticle, in particular, higher hybridization efficiency were obtained with 25 nm gold nanoparticle compared to 5 nm and 15 nm gold nanoparticles. The linear range of this method was 0.05 - 1.2 ×10^-6 mol/L, the detection limit is 1.0 ×10^-8 mol/L.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2006年第8期1169-1171,共3页 Chinese Journal of Analytical Chemistry
关键词 纳米金 核酸检测 石英晶体微天平 杂交 Nanogold, nucleic acid, quartz crystal microbalance, hybridization
  • 相关文献

参考文献4

二级参考文献12

  • 1[1]Patolsky F, Lichtenstein A, Willner I. Amolified microgravimetric quartx-crystal-mcrobalance assay of DNA using oligonucleotide- functionalized liposomes or biotinylate liposomes. J Am Chem Soc, 2000, 122: 418~419
  • 2[2]Zhou X C, Huang L Q, Li S F Y. Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleo- tide immobilization methods and the application in genetic diagnosis. Biosensors & Bioelectronics, 2001, 16: 85~95
  • 3[3]Gotoh K, Tagawa M. Detachment behavior of Langmuir-Blodgett films of arachidic acid from a gold surface studied by the quartz crystal microbalance method. Colloids and Surfaces A: Physico- chemical and Engineering Aspects, 2002, 196: 145~152
  • 4[4]Uttenenthaler E, Koblinger C, Drost S, et al. Quartz crystal biosensor for detection of the African swine disease. Analytical Chimica Acta, 1998, 362: 91~100
  • 5[5]Muratsugu M, Ohta F, Miya Y, et al. Quartz crystal microbalance for the detection of microgram quantities of human serum albumin relationship between the frequency change and the mass of protein adsorbed. Analytical Chemistry, 1993, 65(20): 2933~2937
  • 6[6]Aberl F, Wolf H. HIV serology using piezoelectric immunosensors. Sensors and Actuators B, 1994, 18-19: 271~275
  • 7[7]Caruso F, Furlong D N, Niikura K, et al. In-situ measurement of DNA immobilization and hybridization using a 27 MHz quartz crystal microbalance. Colloids and Surfaces B: Biointerfaces, 1998, 10: 199~204
  • 8[8]Patolsky F, Ranjit K T, Lichtenstein A, et al. Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem Commun, 2000, 1025~1026
  • 9[9]Lin L, Zhao H Q, Li J R, et al. Study on colloidal Au-enhanced DNA sensing by quartz crystal microbalance. Biochemical and Biophysical Research Communications, 2000, 274: 817~820
  • 10[10]Grabar K C, Smith P C, Musick M D, et al. Kinetic control of interparticle spacing in au colloid-based surfaces: rational nanometer-scale architecture. J Am Chem Soc, 1996, 118: 1148~1153

共引文献4

同被引文献208

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部