摘要
研究Loop代数上的一种Toda系统L=[L,M],其Lax Pair中的M是反对称矩阵,而L=L^++M,L^+是准上三角矩阵(包含对角部分),证明这种系统的Lax方程的求解问题与相关的正则Riemann- Hilbert问题等价.按此方法,发现在某些特定的初值条件下系统是可积的.并给出实例求解这一问题,得到了精确解.
In this paper, we construct a Toda system with Loop algebra, and prove that the Lax equation L^·= [L, M] can be solved by means of solving a regular Riemann-Hilbert problem. In our system, M in Lax pair is an antisymmetrical matrix, while L = L^+ + M, and L^+ is a quasi-upper triangular matrix of loop algebra. In order to check our result, we exactly solve a R-H problem under a given initial condition as an example.
出处
《高能物理与核物理》
EI
CSCD
北大核心
2006年第9期838-843,共6页
High Energy Physics and Nuclear Physics