期刊文献+

Loop代数上一种Toda力学系统的求解问题

Study of Solving a Toda Dynamic System with Loop Algebra
原文传递
导出
摘要 研究Loop代数上的一种Toda系统L=[L,M],其Lax Pair中的M是反对称矩阵,而L=L^++M,L^+是准上三角矩阵(包含对角部分),证明这种系统的Lax方程的求解问题与相关的正则Riemann- Hilbert问题等价.按此方法,发现在某些特定的初值条件下系统是可积的.并给出实例求解这一问题,得到了精确解. In this paper, we construct a Toda system with Loop algebra, and prove that the Lax equation L^·= [L, M] can be solved by means of solving a regular Riemann-Hilbert problem. In our system, M in Lax pair is an antisymmetrical matrix, while L = L^+ + M, and L^+ is a quasi-upper triangular matrix of loop algebra. In order to check our result, we exactly solve a R-H problem under a given initial condition as an example.
出处 《高能物理与核物理》 EI CSCD 北大核心 2006年第9期838-843,共6页 High Energy Physics and Nuclear Physics
关键词 Toda多体力学系统 LAX PAIR Riemann—Hilbert问题 Toda many body mechanics system, Lax Pair, regular Riemann-Hilbert problem
  • 相关文献

参考文献6

二级参考文献37

  • 1黄烈德.航天科学技术中的若干数学模型[J].中国空间科学技术,1989,9(4):40-47. 被引量:1
  • 2Senjanovic P. Ann. Phys., 1976,100:227.
  • 3LI Z P.High Energy Phys. and Nucl. Phys., 1995,19:1012(in Chinese).
  • 4CHEN L J, LIANG C H. Scliton Theory and its Applications, Xi' an,Xi'an Electronic Science and Technology University Press, 1997 (in Chinese).
  • 5LI Z P. Classical and Quantal Dynamics of Constrained Systems and Their Symmetry Properties. Beijing: Beijing Polytechnic University Press, 1993( in Chinese).
  • 6LI Z P.High Energy Phys. and Nuel. Phys. , 1997,21:34(in Chinese).
  • 7Singer F,Potasek M J, Teich M C. Quantum Opt. ,1992,4:157.
  • 8YANG B J, QIAO B Y. J. Beijing Univ. Posts and Telecommun.,1994,17 : 56( in Chinese).
  • 9Crosignani B, Porto P Di, Treppiedi A. Quantum Semiclass Opt. , 1995,7:73.
  • 10Dnmmond P D, Kheruntsyan K V, HE H J. Opt. B: Quantum Semiclass. Opt., 1999,1:387.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部