摘要
针对符号几何规划提出了一种直接的分解方法,将难于求解的符号几何规划问题等价地转化为一个非线性程度很低的可分离规划,为寻求困难度高且规模较大的符号几何规划问题的求解提供了一种方法,特别是经此方法分解后的每个子问题均易于求解,最后给出了数值实例,验证了此方法的有效性.
In this paper, a direct decomposition method is proposed for signomial geometric programming. Through decomposition and some equivalent transformation a separable programming can be derived whose degree of nonlinearity is very low. And it is important that this method can be used to produce a kind of primal algorithm for signomial geometric programming processing large scale and high degree of difficulty. Specially each separated subproblem is very easy to solve. Finally numerical examples are given to show the effectiveness of the method.
出处
《系统科学与数学》
CSCD
北大核心
2006年第4期385-394,共10页
Journal of Systems Science and Mathematical Sciences
关键词
符号几何规划
分解方法
困难度
Signomial geometric programming, decomposition method, degree of difficulty.