期刊文献+

一个传染病模型的周期正解 被引量:2

THE POSITIVE PERIODIC SOLUTION FOR AN EPIDEMIC MODEL
原文传递
导出
摘要 研究一类非线性周期连续时滞传染病模型y■i(t)=-αi(t)yi(t)+(ci(t)-yi(t))∑nj=1βij(t)∫0-TKj(s)yj(t+s)ds(i=1,…n).讨论了该传染病模型的周期正解的存在唯一性,运用算子的不动点理论,在一组条件下详细证明了该模型存在唯一的满足容许值的ω-周期正解。 In this paper, we study a class of periodic nonlinear epidemic model with continuous time delay: y^1i(t)=-a1(t)yi(t)+(ci(t)-yi(t))∑^nj=1βij(t)∫^0-TKj(s)yj(t+s)ds,i=1,2,…,n We mainly discuss the existence and uniqueness of periodic and positive solution for the epidemic model. We prove that the model has exactly one w-periodic positive solution, which satisfies the permitted value, by means of two fixed point theorems of the operators.
出处 《系统科学与数学》 CSCD 北大核心 2006年第4期456-466,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10171044) 福建省教育厅资助科技项目(JA05334) 福建教育学院科研基金资助课题
关键词 传染病模型 周期正解 不动点 全连续算子 Epidemic model, positive periodic solution, fixed point, completely continuousoperator.
  • 相关文献

参考文献5

  • 1Lajmanovich A,Yorke T A.Adeterministic model for gonorrhea in a nonhomogeneous populaton.Math.Biosci,1976,28:221-236.
  • 2Aronsson G,Mellander I.Adeterministic model in biomathematics,asymptotic behavior and threshold conditions.Math.Biosci,1980,49:207-222.
  • 3Busenberg S,Cooke K L.Periodic solution of a periodic nonlinear delay differential equation.SIAM Appl.Math.,1978,35:704-721.
  • 4陈伯山.一类非线性周期时滞系统的周期解[J].应用数学学报,1994,17(4):541-550. 被引量:5
  • 5冯春华.一个传染病模型的周期正解[J].生物数学学报,1997,12(4):339-344. 被引量:2

二级参考文献2

共引文献4

同被引文献15

  • 1陈柳娟.一类非线性连续分布时滞系统的周期正解[J].数学的实践与认识,2006,36(4):151-157. 被引量:2
  • 2魏巍,舒云星.具有时滞的传染病动力学模型数值仿真[J].计算机工程与应用,2006,42(34):205-207. 被引量:2
  • 3李军红,崔宁,余秀萍.一类SEIS模型的分岔及混沌[J].数学的实践与认识,2007,37(13):98-101. 被引量:1
  • 4Hethcote H W.The mathematics of infectious diseases[J].SIAM Review,2000,42(4):599-653.
  • 5谭永基,蔡志杰,等.数学模型[M].上海:复旦大学出版社,2004.
  • 6LAJMANOVICH A,YORKE T A.A deterministic model for gonorrhea in a nonhomogeneous populaton[J].Math Biosci,1976,28:221-236.
  • 7ARONSSON G,MELLANDER I.A deterministic model in biomathematics,asymptotic behavior and threshold conditions[J].Math Biosci,1980,49:207-222.
  • 8BUSENBERG S COOKE K L.Periodic solution of a periodic nonlinear delay differential equation[J].Siam Appl Math,1978,35:704-721.
  • 9DONG Yu-jun,ZHOU Er-xin.An application of coincidence continuation theorem in existence of solutions of impulsive differential equations[J].J Math Anal Appl,1996,197:875-889.
  • 10HUO Hai-feng.Existence of positive periodic solutions of a neutral delay Lotka-Volterra system with impulses[J].Comput Math Appl,2004,48:1833-1846.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部