摘要
研究一类非线性周期连续时滞传染病模型y■i(t)=-αi(t)yi(t)+(ci(t)-yi(t))∑nj=1βij(t)∫0-TKj(s)yj(t+s)ds(i=1,…n).讨论了该传染病模型的周期正解的存在唯一性,运用算子的不动点理论,在一组条件下详细证明了该模型存在唯一的满足容许值的ω-周期正解。
In this paper, we study a class of periodic nonlinear epidemic model with continuous time delay: y^1i(t)=-a1(t)yi(t)+(ci(t)-yi(t))∑^nj=1βij(t)∫^0-TKj(s)yj(t+s)ds,i=1,2,…,n We mainly discuss the existence and uniqueness of periodic and positive solution for the epidemic model. We prove that the model has exactly one w-periodic positive solution, which satisfies the permitted value, by means of two fixed point theorems of the operators.
出处
《系统科学与数学》
CSCD
北大核心
2006年第4期456-466,共11页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10171044)
福建省教育厅资助科技项目(JA05334)
福建教育学院科研基金资助课题
关键词
传染病模型
周期正解
不动点
全连续算子
Epidemic model, positive periodic solution, fixed point, completely continuousoperator.